NATBMAR

OF

AGTMEU M

P18

VOL. 2 PART 2

ASSAM

1954-59

PUBLISHED BY
INDIAN COUNCIL OF AGRICULTURAL RESEARCH NEW DELHI

FOREWORD

Increase in agricultural production is one of the main objectives of our agricultural planning. It is only by the exploitation of scientific methods of agriculture that we can hope to increase our agricultural production to the level needed for maintaining a reasonable standard of living to the country's population. The technical worth of improvement measures is best judged from carefully conducted field experiments. While it is true that a large number of agricultural field experiments are conducted in the country, the results of these experiments have not been brought together in an integrated manner for the use of research workers. The absence of such a unified account has often led to duplication of work and delay in the utilisation of results for practical farming. The Institute of Agricultural Research Statistics has rendered a very valuable service by preparing a compendium of agricultural field experiments conducted in the country. The first series of compendium containing the results of all agricultural field experiments during the period 1948-53 have already been published by the Institue.

The present compendium is the second in the series covering the period 1954-59. As in the earlier compendium, the present series also contains critical summaries of results of experiments bearing on important agronomic factors, such as the response of crops to fertilizers and manures, inter-relationship of fertilizers, varieties and cultivation practices and other information of value for giving sound advice to farmers in different regions. - Judging from the demand for the first series of the compendium, I am sure that the present series will also prove equally useful.

A Standing Committee consisting of the Agricultural Commissioner with the Government of India, the Director, Indian Agricultural Research Institute, and the Statistical Adviser, Indian Council of Agricultural Research, has been set up to provide general guidance to the work under this scheme. I congratulate the members of this Committee and, in particular, the Statistical Adviser and his associates at the Institute of Agricultural Research Statistics for bringing out this compendium. The preparation of this compendium has been made possible only by the wholehearted co-operation of the States and other organisations in making available the results of their experimental researches for this purpose. My thanks are due to the officers of the State Departments of Agriculture and other institutions for participating in this work. I hope that the present series will be followed by periodical publications of similar compendia for later years, in order that the availability, in a consolidated form, of results of scientific experiments in agriculture in India may be maintained up-to-date.

New Delhi,
March 26, 1965.
A. D. Pandit

Vice-President,
Indian Council of Agricultural Research.

PREFACE

The present set of volumes form Part II in the series of compendia of Agricultural Field Experiments being published by the Indian Council of Agricultural Research under the project for National Index of Field Experiments and contains a unified record of experiments conducted at agricultural research stations and institutes all over the country. Volumes in Part I in this series were published in 1962 and contained results of some 7,500 experiments conducted during the period 1948-53. The present set of volumes includes results of experiments conducted during the next period that is 1954-59. After the period, covered by Part I of the series, agricultural research and experimentation has expanded so much that for the period 1954-59, to which the present volumes refer, results of more than 15,000 experiments are available.

The present compendium is prepared on the same pattern as the previous one and is divided into 15 volumes one each for (1) Andhra Pradesh, (2) Assam, Manipur and Tripura, (3) Bihar, (4) Gujarat, (5) Kerala, (6) Madhya Pradesh, (7) Madras, (8) Maharashtra, (9) Mysore, (10) Orissa, (11) Punjab, Jammu and Kashmir and Himachal Pradesh, (12) Rajasthan, (13) Uttar Pradesh (14) West Bengal and (15) All Central Institutes. In each volume, background information of the respective state regarding its division into different soils and agroclimatic regions, rainfall and cropping pattern followed in each region and agricultural production and area under different crops in the state is given. The experiments reported in each volume have been arranged crop-wise for each state. All the experiments belonging to a particular crop at various research stations are grouped together. For a particular crop, experiments are arranged according to the following classification :

Manurial (M), Cultural (C), Irrigational (I), Diseases, pests and chemicals other than fertilizers (D), Rotational (R), Mixed cropping (X) and combinations of these wherever they occur (e.g. CM as Cultural-cum-Manurial). Experiments in which crop varieties also form a factor are denoted by adding V to their symbol and are grouped together (e.g. MV as Manurial-cum-Varietal).

This publication owes its origin to the guidance and help of Dr. D.J. Finney, F.R.S., Professor of Statistics, Aberdeen University, Scotland, in formulating the project during his stay at the Institute of Agricultural Research Statistics as an F.A.O. expert in 1952-53.

At the Institute of Agricultural Research Statistics the work under the scheme was carried out under the supervision of Shri. T.P. Abraham, Assistant Statistical Adviser. The actual working of the scheme was conducted by Shri G.A. Kulkarni, Statistician till he left the Institute in July, 1964. The work was subsequently taken over by Shri O.P. Kathuria, Assistant Statistician. Messrs. L.B.S. Somayazulu, P.P. Rao, M.L. Sahni, Harbhajan Singh, A.L: Punhani, M.K. Joshi, N.K. Worrier, H.C. Jain and J.K. Kapoor of the statistical staff of the Institute deserve special mention for careful and painstaking work in editing and scrutiny of the manuscript as well as proofs of the compendium.

The burden of collecting the data from the various research stations and the analysis of a large number of experiments once again fell on the regional staff of the Council placed in different States. They deserve to be congratulated for the hard work they have put in.

Thanks are due to the State Departments of Agriculture, the Central Institutes and the Commodity Committees who made the data of the experiments conducted under their jurisdiction readily available to the staff of the Institute. The present publication has become possible only through their unstinted co-operation. The Institute is also thankful to the various
officers in the States who worked as Regional Supervisors for the project from time to time and took keen interest in the working of the Scheme. The list of the names of the regional supervisors and the regional staff of the project is given on the following page.

V.G. Panse
New Delhi,
March 25, 1965.
Statistical Adviser,
Institute of Agricultural Research Statistics (I.C.A.R.).

REGIONAL SUPERVISORS AND REGIONAL STAFF FOR THE NATIONAL INDEX OF FIELD EXPERIMENTS

Region and Headquarter	Statistical staff from the Institute of Agricultural Research Statistics.	Regional Supervisors
1. Andhra Pradesh (Hyderabad)	S.K. Jilani P.R. Yeri	Dr. Mohd. Quadiruddin khan, Joint Director of Agricultura!. Late Dr. Syed Waheeduddin. Shri Md. Khasim Adoni, Joint Director of Extension. Shri N.V. Mohana Rao, Joint Director, Agricultural Research Institute, Rajendranagar. Shri L. Venkataratnam, Deputy Director of Agriculture (Research).
2. Maharashtra (Poona)	P.D. Mehta B. Ramarrishnan	Shri D.S. Rangarao, Statistician, Department of Agriculture.
3. Gujarat (Ahmedabad)	S.P. Doshr	Dr. D. K. Desat, Deputy Director of Agriculture (Statistics). Shri J.B. Trivedi, Deputy Director of Agriculture (Statistics).
4. Uttar Pradesh (Lucknow)	S.N. Bajpai M.P. Saxena G.N. Bahuguna A.C. SRivastava	Dr. K. Kishen, Joint Director of Agriculture (Statistics).
5. Madhya Pradesh	T. Lokeswara Rao H.C. Gupta	Shri A.G. Khare, Statistician, Department of Agriculture.
6. Punjab, Jammu \& Kashmir \& Himachal Pradesh (Chandigarh)	A.C. Kaistha B.L. Kaistha M.S. Batra	Shri Piara Singh Sahota, Director of Crop Insurance. Shri Mohinder Singh Pannu, Statistician, Department of Agriculture.
7. Bihar (Sabour)	M.K. Joshi P.C. Kholia	Shri G.P. Singh, Statistician, Department of Agriculture. Shri R.S. Roy, Principal, Agricultural Research Institute, Sabour.
8. Rajasthan (Jaipur)	B.P. Dyundr N.K. Ohri	Shri H.C. Kothari, Statistician, Department of Agriculture,
9. Orissa (Bhubaneswar)	L.B.S. Somayazulu	Shri B. Misra, Deputy Director of Agriculture (Hq.) Shri D. Misra, Principal, Uttakal Krushi Mahavidyalaya, Bhubaneswar.
10. West Bengal (Calutta)	S.N. Nath	Shri S.N. Mukerjee, Statistical Officer, Directorate of Agriculture.

(viii)

11. Madras (Coimbatore)	P. Prabhakara Rao V. Venkateswara Rao	Late Shri M. Bhavani Sankar Rao, Vice-Principal and Secretary, Research Council, Agricultural College and Research Institute, Coimbatore. Shri T. Natarajan, Agronomist. Shri A.H. Sarma, Extension Specialist. Shri V. Raman, Secretary, Research Council. Shri K.R. Nagaraja Rao, Secretary, Research Council.
12. Assam	T.K. Gupta	Dr. S.R. Barooha, Director of Agriculture, Assam. Shri B.N. Duara, Joint Director of Agriculture, Assam.
13. Mysore (Bangalore)	K.A. Balakrishnan	Shri M.A. Wali, Director of Statistics, Shri B.V.S. Rao, Assistant Director of Statistics.
14. Kerala (Trivandrum)	V.N. Iyer	Shri M. Janardanan nair, Director of Agriculture. Shri N. Shankara Menon Director of Agriculture. Shri P.D. Nair, Director of Agriculture.

ABBREVIATIONS COMMON TO EXPERIMENTS ON ANNUAL AND PERENNIAL CROPS AND EXPERIMENTS ON CULTIVATORS' FIELDS.

Crops :- In the top left corner is given the name of the crop on which the experiment is conducted. Within brackets along side the crop is mentioned the season wherever the information is available.

Ref :- Against the sub-title 'reference' is mentioned the name of the State, the year in which the experiment is conducted and the serial number of the experiment for that year given in brackets.

Abbreviations adopted for States are as follows :-

1. A.P.-Andhra Pradesh
2. M.-Madras
3. As.-Assam
4. Mh.-Maharashtra
5. Bh.--Bihar
6. Ms.-Mysore
7. Gj--Gujarat
8. H.P.-Himachal Pradesh
9. J.K.-Jammu and Kashmir
10. K.-Kerala
11. M.P.-Madhya Pradesh
12. Or.-Orissà
13. $\mathrm{Pb} .-$ Punjab
14. Rj.-Rajasthan
15. U.P.-Uttar Pradesh
16. W.B.-West Bangal

For the experiments conducted under the schemes sponsored by the Indian Concil of Agricultural Research like the Model Agronomic Experiments or the Simple Fertilizer Trials scheme no serial numbers have been given at the source as the data of these experiments were collected at the Headquarters (New Delhi). In such cases the abbreviations MAE, SFT or TCM are given in the brackets against the year in which the experiment is conducted.

Site :-Name of the Research Station is mentioned alongwith the place where it is. located, e.g. Agri. Res. Stn. for Agricultural Research Station.

For Central Institutes, the corresponding standard abbreviations have been adopted e.g. I.A.R.I. for the Indian Agricultural Research Institute.

In case of the experiments conducted on cultivators' fields whether under an Indian: Council of Agricultural Research scheme or by the State Government, the abbreviation (c.f.) is given along with the site or centre as, for example, Cuttack (c.f.).

Type :- Abbreviations used against this item are one or more than one of the following :-

C-Cultural ; D-Control of Diseases and Pests ; I-Irrigational ; M-Manurial ; RRotational ; V-Varietal and X-Mixed cropping. e.g. CM is to be read as Cultural-cummanurial.

Object :- A statement of the objective of the experiment is given indicating the main crop and type of the experiment. In case of M.A.E., S.F.T. and T.C.M. experiments, the type to which the experiment corresponds is also given, e.g. Type V, Type A or B or C etc.

Results :- Information under this heading should be read against the following items :-
(i) General mean. (ii) S.E. per plot. (iii) Results of test of significance. (iv) Summary table(s) with S.E. of comparison(s).

Other abbreviations used in the text of experiments :

Nitro. Phos.--Nitrogen Phosphate
Ammo. Phos.-Ammonium Phosphate
A/S-Ammonium Sulphate
A/S/N.-Ammonium Sulphate Nitrate
C/A/N-Calcium Ammonium Nitrate

A/N-Ammonium Nitrate
A/C-Ammonium Chloride
C / N-Chilean Nitrate
N -Nitrogen
P-Phosphate

(x)

K-Potash
B.M.--Bone meal
Mur. Pot.-Muriate of Potash
Pot. Sul.- Potassium Sulphate
Super-Super Phosphate
Zn. Sul.-Zinc Sulphate
C/S-Copper Sulphate
G.M.-Green Manure
F.Y.M.-Farm Yard Manure
F.W.C.-Farm Waste Compost
F.M.-Fish Manure
G.N.C.-Groundnut cake
M.C.-Municipa! Compost
T.C.-Town Compost
lb.-Pounds
Srs.-Seers
B.D.-Basal dressing
C.L.-Cart load
ac.-Acre
Dical. Phos.-Dicalcium Phosphate

Under the item (ii) (b) of the sub-heading 'Basal conditions' in the text of the experiment, the respective farm, station at which the experiment was conducted has been referred to for the soil analysis. The soil analysis of the farm, with other details of the research station is given under the background information of each state. The information regarding the details of experimental stations may be obtained under the respective items as given below :

DETAILS OF EXPERIMENTAL STATIONS

A. General information :

(i) District and the nearest railway station with Latitude, Longitude and Altitude if available. General topography of the experimenta! area. (ii) Type of tract it represents. (iii) Year of establishment. (iv’, Cropping pattern. (v) Programme of research.
B. Normal rainfall :

Average monthly rainfall specifying the period on which the figures are based.
C. Irrigation and drainage facilities :
(i) (a) Whether available, if so, since when. (b) Type of facilities available. (ii) Whether there is a proper drainage system.
D. Soil type and soil analysis :
(i) Broad soil type with depth, colour. and structure etc.
(ii) Chemical analysis.
(iii)
Mechanical analysis.
E. No. of experiments :

No. of experiments conducted on different crops that have been included in the compendium.

Information under the following heads is to be read against the respective items as given below.

BASAL CONDITIONS

A. For experiments on annual crops :

(i) (a) Crop rotation if any. (b) Previous crop. (c) Manuring of previous crop. (State amount and kind). (ii) (a) Soil type. (b) Soil analysis. (iii) Date of sowing'planting. (iv) Cultural practices. (a) Preparatory cultivation. (b) Method of sowing planting. (c) Seed-rate. (d) Spacing. (e) No. of seedlings per hole. (v) Basal manuring with time and method of application. (vi) Variety. (vii) Irrigated or Unirrigated. (viii) Post-sowing/planting cultural operations. (ix) Rainfall during crop season (x) Date of harvest.

B. For experiments on perennial crops:

(i) History of site including manuring and other operations. (ii) (a) Soil type. (b) Soil analysis. (iii) Method of propagation of plants. (iv) Variety. (v) Date and method of sowing planting, (vi) Age of seedlings at the time of planting. (vii) Basal dressing witi. time and method of application. (viii) Cultural operations during the year. (ix) Inter cropping if any. (x) Irrigated or Unirrigated. (xi) Rainfall during crop season. (xii) Date of harvest.

C. For experiments on cultivators' fields:

(i) (a) Crop rotation, if any. (b) Previous crop. (c) Manuring of previous crop. (iii) Soil type in general. (iii) Basal manuring with time and method of application. (iv.) Variety. (v) Cultural practices. (a) Preparatory cultivation. (b) Method of sowing. (c) Seed-rate. (d) Spacing. (e) No. of seedlings per hole. (vi) Period of sowing/planting. (vii) Irrigated or Unirrigated. (viii) Post-sowing/planting cultural operations. (ix) Rainfall during crop season. (x) Period of harvesting.

DESIGN

A. For experiments on annual crops :

(i) Abbreviations for design : C.R.D.-Completely Randomised Design. R.B.D.-Randomised Block Design, L. Sq.-Latin Square, Confd.-Confounded, Fact.-Factorial. (other designs and modifications of the above to be indicated in full.). (ii) (a) No. of plots per block. (b) Block dimensions. (iii) No. of replications. (iv) Plot size. (a) Gross. (b) Net. (v) Border or guard rows kept. (vi) Whether treatments are randomised (separately in each block).

B. For experiments on perennial crops :

(i) Abbreviations for designs: C.R.D.-Completely Randomised Design; R.B.D.Randomised Block Design ; L.Sq.-Latin Square ; Confd.-Confounded. (other designs and modifications of the above indicated in full). (ii) (a) No. of plots per block. (b) Block dimensions. (iii) No. of replications. (iv) No. of trees/plot. (v) Border or guard rows kept. (vi) Are treatments randomised.

C. For experiments on cultivators' fields :

(i) Method of selection of experimental sites. (ii) No. and distribution of experiments. (iii) Plot size. (a) Gross. (b) Net. (iv) Whether treatments are randomised.

GENERAL

A. For experiments on annual crops :
(i) Crop conditions during growth with date of lodging, if any. (ii) Incidence of pests and diseases with control measures taken: (iii) Quantitative observations taken. (iv) In case of repetition in successive years-(a) from what year to what year, (b) whether treatments were assigned to the same plots in the same manner every year, (c) reference to combined analysis, if any. (v) In case of repetition in other places (a) names of the places along with reference and (b) reference to combined analysis, if any. (vi) Abnormal occurrences like heavy rains, frost, storm etc., if any. (vii) Any other important. information.
B. For experiments on perennial crops :
(i) Crop condition during the year. (ii) Incidence of pests and diseases with control measures taken. (iii) Quantitative observations taken. (iv) In case of repetition in successive years-(a) from what year to what year, (b) reference to combined analysis, if any. (v) Abnormal occurrences like heavy rains, frost, storm etc., if any. (vi) Any other important information.

C. For experiments on cultivators' fields :

(i) Crop condition during growth. (ii) Incidence of pests and diseases with control measures taken. (iii) Quantitative observations taken. (iv) In case of repetition in successive years, (a) from what year to what year, (b) whether treatments were assigned to the same plots in the same manner every year, (c) reference to combined analysis, if any. (v) In case of repetition in other places names of places alongwith reference. (vi) Abnormal occurrances, like heavy rains, frost, storm etc., if any. (vii) Any other important information.
(xii)

TABLE OF CONVERSIONS TO METRIC UNITS

| 1 foot | $=304.8 \mathrm{~mm}$. |
| :--- | :--- | :--- |
| 1 acre | $=0.404606$ hectare. |
| 1 gram | $=0.035274$ ounce $=0.085735$ tola $=0.017147$ chatak |
| 1 kg. | $=2.20462$ pounds $=1.07169$ seers. |
| 1 metric tone | $=0.9842$ ton $=26.7923$ maunds. |
| 1 maund | $=0.373242$ quintal $=37.3242 \mathrm{~kg}$. |
| $1 \mathrm{lb} . ac.$. | $=1.12085 \mathrm{~kg} . /$ hectare. |
| 1 md./ac. | $=92.23002 \mathrm{~kg} . /$ hectare $=0.9223$ quintal/hectare. |
| 1 ton/ac. | $=2.51071$ metric tones, hectare. |
| 1 gallon (Imp.) | $=4.54596$ litres. |

SI. No.	Name of Crop	Botanical Name	Assamese	Bengali	Oriya	Telugu	Tamil	Malayalam	Kannada	ivarathi	Gujarati	Hind i	Punjabi
1.	Paddy	Oryza sativá L .	Dhan	Dhan	Dhano	Vadlu; Biyyamu	Nel	Nellu	Bhatta	Bhat	Dangar	Dhan ; Chawal	Chaul; Dhan
2.	Maize	Zea mays L.	Gom dhan	Bhutta	Macca	Mokkajonna	Makka, Cholam	Cholam	Musutina Jola	Makka	Makkai	Makka	Makki ; Makayee
3.	Mati kalai	Phaseolus mungo var. radiatus Linn.	Matimah	Mashkalai	Biri	Minumulu	Uzhundu	Uzhunnu	U du	Udid	Adad, Udad	Urd	Mash, Urd
4.	Potato	Solanum tuberosum L.	Alooguti	Alu	Bilati Alu	Bangaladumpa, Urlagadda	Urulai Kizhangu	Urala Kizangu	Alu gedde	Batata	Aloo, Batata	Aaloo	Alu
5.	Cabbage	Brassica oleracea L. var. capitata L.	Bandhakabi	Bandhakapi	Bandha Kobi	Akugobi	Muttaikose	Muttakose	Yele kosu	Kobi	Kobij	Patgobhy	Band gobhi
6.	Cauliflower	Brassica oleracea L. var. botrytis L.	Phool Kabi	Fulkapi	Fula kobi	Poogobi	Gospoovu	Caul:flower	Hukosu	Phul kobi; Fulvar	Fulkobi ; Fulvar	Phool Gobhy	Phui gobhi
7.	Brinjal	Solanum melongena L.	Bengena	Begun	Baigan	Vankaya	Katharikai	Vazhuthana	Badane kayi	Vange	Vengan	Baingan	Bengan ; Bataun
8.	Tomato	Lycopersicum esculentum Mill.	Bilahi	Bilati began	Bilati baigan bapatala, ghant	Tomato ; Ramamulaka; Seema vankaya	Thakkali	Thakkali	Tomato	Welwangi ; Tambati	Vilaiti wagan ; Tameta	Tamatter	Tamatar
9.	Sugarcane	Saccharum officinarum L.	Kuhiar	Akh	--	Cheruku	Karumbu	Karimbu	Kabbu	Oos	Sherdi	Ganna; Kamad; Naishakar	Kamad ; Ganna; Eakh
10.	Cotton	Gossypium spp.	Kapah	Karpas ; Tula	Kapa	Pratti	Paruthi	Paruthi	Hatti	Kapus	Kapas	Kapas	Kapah
11.	Jute	Corchorus spp.	Marapat	Shada pat; Tosha pat	Jhota	Janumu	Chanapai	Chanambu	Senabu	Joot	Moti Chhunchh	Jute	Patsan
12.	Groundnut	Arachis hypogaea L.	China Badam	Cheena badam	China badam	Nelashaanga	Nilakadalai	Nilakkadala	Kadale kayi	Bhuimug	Magafali	Mungphali	Mungfali
13.	Ginger	Zingiber officinale Rosc.	Ada	Ada	Ada	Allam	Inji	Inchi	$\underset{\text { Slunti ; }}{\substack{\text { ala }}}$	Ale	Adu	Adrakh	Adrak
14.	Mustard	Brassica Juncea Coss.	Sariah	Rai Sarisha	Rai	Avalu	Kadugu	Kaduku	Kampu sasive	Mohri	Rai	Rai	Rai

glossary of vernacular name of crops-contd.

SI. No.	Name of Crop	Botanical Name	Assamese	Bengali	Orlya	Telugu	Tamil	Malayalam	Kannada	Marathi	Gujarati	Hindi	Punjabl
15.	Large Cardamom	Amomum subulatum Roxb.	Dangar Elasi	Bara elach	Badaalaicha	Peddaelakulu	Periya clakkaai	Kattu elam :	Dodda yalakki	Mothi elachi	Mothi elchi	Bari ilaichy	Wadi illaichi
16.	Coconut	Cocos ucifera L.	Narikol	Narikel	Nadia	Tenkaya; Kobbari	Thennai	Thengu	Thengu	Naral	Nalieri	Gola or Narial	Naryal
17.	Cashewnut	Anacardium occidentale L.	Kaju	Kaju badam	Lanka amba	Jeerimamidi	Mundiri	Kasu mavu	Godambi	Kaju	Kaju	Kaju	Khaja
18.	Cardamom	Elettaria cordamomum Maton	Elachi	Chota elach	Gujurati	Yelakkayalu	Ealakai	Elam	Yalakki	Veldode	Elaichi ; Elchi	Elachi	Illaichi
19.	Black Pepper	Piper nigrum L.	Jaluk	Gol march	Golmarich	Miriyalu	Milagu	Kuru mulaku	Kare menasu	Miri	Mari	Kali mirich	Kali mirch
20.	Pineapple	Ananas sativa Schutt.; Ananas comosus Merr.	Matikathal	Anarash	Sapuri, Saphrd, panasa	Anasa	Annasi palam	Kaitha Chakka	Ananas	Anaoas	Anenas	Ananas	Ananas

CONTENTS

Page
FOREWORD (iii)
PREFACE (v)
LIST OF ABBREVIATIONS (ix)
GLOSSARY OF VERNACULAR NAMES OF CROPS (xiii)
ASSAM STATE (xvii)
PARTICULARS OF RESEARCH STATIONS (xxi)
EXPERIMENTAL RESULTS (CROP-WISE)
Paddy 1
Maize 56
Matikalai 68
Potato 69
Cabbage 90
Cauliflower 92
Brinjal 93
Tomato 94
Sugarcane 95
Cotton 100
Jute 103
Groundnut 111
Mustard 113
Ginger 135
Cardamom 145
Coconut 146
Cashewnut 150
Pineapple 150
Black pepper 152

ASSAM

1. General:

The State of Assam including N.E.F.A. and Nagaland lies on the far eastern side of India. It is bound by the Himalayan ranges on the north, East-Pakistan on the west and Burma on the east. It is triangular in shape with its base as Himalayas and vertex pointing. to the south and comprises of 12 districts. The State has a geographical area of 54,335 thousand acres. The reporting area according to village papers is about 35,764 thousand acres. The land utilization figures for this State are provided in table 1 below :

TABLE 1.
Land utilisation Statististics of Assam State (1958-59)
(Area in '000 acres)
(Area in '000 acres)

Reporting area as per village papers	35,764
Land under forests	12,042
Barren \& uncultivable land	$10,701:$
Land put to non-agricultural uses	551
Culturable waste	275
Permanent pastures \& other grazing land	380
Land under miscellaneous tree crops	2,983
Current fallows	476
Other fallow land	413
Net area sown	$5 ; 118$
Tctal cropped area	6,003
Area sown more than once	885

2. Topography :

Physiographically, Assam is divided into three natural divisions: (i) the Brahamputra valley, (ii) The Surma valley and (iii) The Assam range. The Aka Abor, Mishmi and other neighbouring hills, etc., from the eastern part of the Himalayas together with the Naga Hills. Manipur and Lushai Hills surround the east and north-east of Assam. The Brahamputra vally is an alluvial plain, 450 miles long and about 50 miles broad. It is bounded on all sides, excepting the west, by hills. It is stretched almost east and west towards the lower portions; but at its upper end, it is inclined towards north-east. The Brahmaputra flows through the middle of this plain and receives in its course, the drainage of the Himalayas on the north and the Assam range on the south. The Surma valley is a flat plain about 125 miles long and 60 miles wide, closed on three sides by hill ranges. The Surma river rises on the southern slopes of the mountain ranges at the borders of the Naga Hills and flows south through Manipur. It represents a vast deltaic expanse, liable to deep flooding in the rainy season. Its mean elevation is 87 ft . at Silchar and 48 ft . in Sylhet. The rivers are, therefore, sluggish and deposit large amount of silt raising their banks well above the level of the surrounding country. Consequently the village sites assume a swamp condition in the rains. Occasinally, there are low basins, locally called haors, which retain water almost throughout the year. The surface of the valley is interspersed with small, isolated hillocks called tillas. The Assam range of mountains, which separates the Surma and the Brahmaputra valley, projects at right angles from the Burmese mountain range and lies almost due east and west. To the west, a height of $4,600 \mathrm{ft}$. is attained at Nikrek. Towards the southern face, the Shillong plateau has a very steep slope.

3. Soil types and Agro-climatic regions.

The most important characteristic of the soil of Assam is its acidity. The soil acidity appears to increase with rainfall and heaviness of the soil. The soils of the northern bank of
(xviii)

Brahmaputra are less acidic than those of the southern bank. In the Surma valley, the soil on the tillas and bheels are markedly acidic. The soils of the low lying tracts are less acidic and neutral or slightly alkaline.

Chemically the soils of the Brahmaputra valley and the Surma valley are not very much different from each other. The soils of the Surma valley are of finer texture as compared to the soils of the Brahmaputra valley. In other respect, e.g., the percentage of the different constitutions the soils are not much different. The Surma valley is characterised by its swampy nature and the abundance of bheels, the soils of which contain large percentage of organic matter. The soils on the tillas of Cachar differ from the rest only in so far as they occupy a heavy level.

The soils of the Assam range districts are comparatively rich in organic matter and nitrogen. This may be a result of the comparatively virgin nature of the hill soils. Both chemical and mechanical compositions show great variations.

The State of Assam can thus be divided into two distinct regions namely the Assam Hills region and the Assam Plains region. The Brahmaputra and the Surma river vallies owing to the similarity in their soil types together constitute the Assam Hills region, the Assam range being the same as the Assam Plains region. A brief description of these regions is as follows:-

1. Assam Hill Region: The districts covered by the region are Garo hills, United Khasi and Jaintia Hills, United Mikir and North Cachar Hills, Naga Hills and Mizo Hills. This also included Manipur. Annual rainfall of this region ranges between 1905 to 2540 mm . Paddy and Jute are the main field crops.
2. Assam Plains Region: This consists of Goalpara, Kamrup, Cachar, Darrang, Nowgong, Sibsagar and Lakhimpur districts. This area also receives 1905 to 2540 mm . rainfall annually. Soils are alluvial type and undifferentiated. Main field crops of this region are Paddy and Tea. The annnal normal temperature and relative humidity at some selected centres are as follows :

	$\mathrm{Max}^{\circ} \mathrm{C}$	$\mathrm{Min}^{\circ} \mathrm{C}$	R.H.\%
Cherrapunji	20.5	14.2	73
Dibrugarh	27.3	18.5	85
Gauhati	29.3	19.2	81
Shillong	21.1	11.2	69
Sibsagar	27.5	18.8	87
Tezpur	28.5	19.5	82

4. Irrigation.

The State has a total irrigated area of 1533 thousand acres. The area irrigated through different sources is as fallows :

TABLE 2.
Area irrigated through different sources (1958-59)
(Area in '000 acres)

Source	Acreage	\% irrigated area
Govt. Canals	178	11.6
Private Canals	721	47.0
Other sources	634	41.4
Total	1533	100.0

5. Agricultural Production and Normal cropping pattern.

Apart from Tea, the important field crops of this State are Paddy, Sesamum, Rape and Mustard and Jute. The figures for area, production and average yield per acre of various crops in this State are given in Table 3 below :
(xix)
TABLE 3.
Area, production and Av. yield per acre of principal crops (1963-64)

	$\begin{gathered} \text { Area } \\ \text { in ' } 000 \mathrm{ac} . \end{gathered}$	Production in '000 tons.	Yield in lb, /ac.
Paddy	4557	1818.8	894
Maize	50	8.9	397
Smallmillets	16	2.9	413
Wheat	10	2.9	661
Pulses	206	35.3	384
Castor	5	0.9	441
Sesamum	22	3.9	401
Rape \& Mustard	294	49.3	471
Linseed	3	0.9	735
Mesta	20	28*	1.4*
Cotton (kapas)	41	6.9	35
Jute	334	1020*	3.0 *
Sugarcane	70	1102	15.74**

> * '000 bales of 400 lbs . each $* *$ tons/ac.

6. Experimentation and Agricultural Research.

In all 331 experiments conducted during the period 1954-59 were reported from this State. Besides, 52 experiments conducted under the Model Agronomy and Simple Fertilizer Trial Schemes of the Indian Council of Agricultural Research and the experiments conduc-

TABLE 4.
Distribution of experiments crop-wise and type-wise.

Crop	M	MV	C	CV	CM	I	D	Total
Paddy	47	4	6	-	7	-	15	79
Maize	22	-	-	-	-	-	-	22
Mati Kalai	2	-	-	-	-	-	-	2
Potato	30	-	2	-	-	1	3	36
Cabbage	3	-	-	-	-	-	-	3
Cauliflower	2	-	-	-	-	-	-	2
Brinjal	1	-	-	-	-	-	-	I:
Tomato	4	-	-	-	-	-	-	4
Sugarcane	7	-	1	-	-	-	-	8
Cotton	2	-	3	-	-	-	-	5
Jute	2	3	-	-	-	-	-	5
Groundnut	4	-	-	-	-	-	-	4
Mustard	12	-	11	7	-	-	2	34
Ginger	6	-	8	1	-	-	-	15
Cardamom	-	-	4	-	-	-	-	4
Coconut	2	-	3	-	-	-	-	5
Cashewnut	1	-	-	-	-	-	-	1
Pineapple	2	-	-	-	-	-	-	2
B. Pepper	-	-	1	-	-	-	-	1
Total	45		39	8	7	1	20	231 *

ted on cultivators'fields by the State are also included in the compendium for this period. Jorhat, Karimganj Kokilamukh, Titabar and Upper Shillong are the major agricultural research stations of the State. About 64.5% of experiments have been of purely manurial type while those with manurial treatments are about 70.6%. Maximum number of trials (34.9%), Mustard and maize followed in order with 13.9% and 9.5% of the experiments respectively. The crop and type wise break up of the experiments is given in Table 4.

[^0]
PARTICULARS OF RESEARCH STATIONS AND SOIL ANALYSIS

1. Government Agriculture Farm, Jorhat.

A. General infomation :
(i) District Sibsagar, $2 \frac{1}{2}$ miles from Jorhat R.S. (ii) N.A. (iii) Started in 1923 . (iv) and (v) N.A.
B. Normal rainfall in mm. :

Details N.A.
C. Irrigation and drainage facilities :

Details N.A.
D. Soil type and soil analysis :
(i) Clay loam. (ii) Chemical and (iii) Mechanical analysis N.A.
E. No. of experiments :

Pảdy-17, Maize-1, Malikalai-2, Potato-8, Cabbage-3, Cauliflower-2, Brinjal-1, Tomato-4, Sugarcane-5, Groundnut-4, Mustard-1, Total $=48$.

2. Sugarcane Research Station, Jorhat.

A. General information :
(i) District Sibsagar, 3 miles from Jorhat R.S. Plain level. (ii) N.A. (iii) Started in 1906. (iv) and (v) N.A.
B. Normal rainfall in mm.:

1499 mm . in a year, details-N.A.
C. Irrigation and drainage facilities :

Details N.A.
D. Soil type and soil analysis :
(i) Reddish sandy loam of old alluvium, shallow, hard, sub soil at a depth of one ft . or so, yellowish grey in colour and single grain (old alluvium) in structure. (ii) Chemical analysis: $\mathrm{N}-0.114$. Total $\mathrm{P}_{2} \mathrm{O}_{5}-0.025$, Available $\mathrm{P}_{2} \mathrm{O}_{5}-0.008$, Total $\mathrm{K}_{2} \mathrm{O}-0.115$, Available $\mathrm{K}_{2} \mathrm{O}-0.007$: and Acidity (ppm.)-1350. (iii) Mechanical analysis (\%) : Coarse sand-7.2, fine sand--52.5, Silt-22.6, Fine silt-5.0, Clay-6.6 and moisture and less on ignition-5.1.
E. No. of experiments:

Same as on Govt. Agri. Farm, Jorhat.

3. Rice Experimentation Station, Karimganj.

A. General Information:
(i) District Cachar, 5 miles from Karimganj R.S. Two types of land, one is slightly higher than the other. There is no hilly land and no bund around the fencing with a gate for inlet or outlet of water. (ii) It represent plain tract. (iii) Started in 1913. (iv) and (v) N.A.
B. Normal rainfall in mm. :

June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	March	April May	Total	
740	617	498	393	257	86	3	12	41	134	337	709	3828

(Av. basad on the rainfall data for the period 1949-50 to 1958-59)
C. Irrigation and drainage facilities:
(i) (a) Yes.
(b) Tanks.
(ii) Yes.
D. Soil type and soil analysis :
(i) Sandy and clay loam, blackish and fine. (ii) Chemical analysis and (iii) Mechanical analysis-N.A.
E. No. of experiments :

Paddy-22, Total $=22$.

4. Seed Farm, Kokilamukh.

A. General information :
(i) District Sibsagar, $7 \frac{1}{2}$ miles from Jorhat R.S. The area is flat.
(ii) Alluvial tract.
(iii) Started in 1927. (iv) and (v) N.A.
B. Normal rainfall in mm. :

| June July | Aug. | Sept. | Oct. | Nov. | Dec. | Jan. | Feb. | March | April | May | Total | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 269 | 479 | 363 | 195 | $\mathbf{I 7 6}$ | 28 | 20 | 36 | 47 | 84 | 221 | 468 | 2376 |

(Av. based on the rainfall data for the period 1954 to 1959).
C. Irrigation and drainage facilities :
(i) (a) and (b) N.A.
(iii) Yes.
A. Soil type and soil analysis :
(i) Sandy loam. (ii) Chemical analysis and (iii) Mechanical analysis as below :

Chemical analysis (\%).

Depth	N.	Avl. $\mathrm{P}_{2} \mathrm{O}_{5}$	Avl. $\mathrm{K}_{2} \mathrm{O}$	pH	pH	Acidity
			(Water extract)		($\mathrm{K}_{2} \mathrm{O}$ extract)	
$0^{\prime \prime}-9^{\prime \prime}$	0.174	0,043	0.013	5.0	4.7	39.2
$9^{\prime \prime}-18^{\prime \prime}$	0.011	0.039	0.018	5.9	4.8	28.0

Mechanical Analysis (\%).

Depth	Course sand	Fine sand	Silt	Clay	Moisture	Loss on ignition
$0^{\prime \prime}-9^{\prime \prime}$	0.5	49.5	24.0	22.0	2.0	4.8
$9^{\prime \prime}-18^{\prime \prime}$	1.0	48.9	28.0	20.0	1.4	3.0

E. No. of experiments :

Mustard-31, Total=31.

5. Rice Experimentation Station, Titabar.

A. General tnformation :
(i) District Sibsagar, 3 miles from Titabar R.S. (ii) Old alluvium tract. (iii) Started in 1923. (iv) and (v) N.A.'
B. Normal rainfall in mm.:

June July Aug. Sept. Oct. Nov. Dec. Jan. Feb. March April May Total $\begin{array}{lllllllllllll}202 & 506 & 316 & 117 & 102 & 16 & 24 & 18 & 23 & 62 & 114 & 340 & 1841\end{array}$ (Av. based on the rainfall data for the period 1956 to 1959).
C. Irrigation and drainage facilities :
(i) (a) and (b) N.A.
(ii) Yes.
'D. Soil type and soil analysis:
(i) Heavy clayey loam, $6^{\prime \prime}$ deep, grey in colour.
(ii) Chemical and (iii) Mechanical analysis-N.A.
E. No. of experiments :

Paddy-21, Total $=21$.

(xxiii)

6. *Paddy Research Station, Upper Shillong.
A. General information :
(i) District Khasi and Jantia Hills, 5 miles from Shillong R.S. (ii) High altitude and cold area. (iii) Started in 1953. (iv) and (v) N.A.
B. Av. rainfall in mm. :

Details N.A.
G. Irrigation and drainage facilities:
(i) (a) and (b) N.A. (ii) N.A.
D. Soil type and soil analysis:
(i) N.A. (ii) Chemical analysis and Mechanical analysis-N.A.
E. No. of experiments :

Paddy-6, Maize-21, Potato-28, Total $=55$.
*There are 9 more research stations : Barpetta, Burlickson, Kahikuchi, Kanikar, Lembucherra, Naya bunglow, Nongpoh, Roha and Tura where about 54 more experiments are conducted on crops like Jute, Sugarcane, Coconut, Pineapple, Ginger Cardamom and Cotton.

Grop :- Paddy ($A h u$).
Site :- Govt. Agri. Farm, Jorhat.

Ref:- As. 54(17).
Type :- ‘'M'.

Object:-To study the effect of different manures on Paddy in acidic soil under limed and un-limed conditions.

1. BASAL CONDITIONS :
(i) (a) N.Ạ. (b) Mustard. (c) N.A. (ii) (a) Old alluvial, sandy loam and acidic. (b) N.A. (iii) N.A. (iv) (a) 8 ploughings followed by laddering. (b) Broadcasting. (c) to (e) N.A. (v) $200 \mathrm{md} / \mathrm{ac}$. of cowdung and $200 \mathrm{md} . / \mathrm{ac}$. of compost. (vi) Rangadoria, Ahu (medium). (vii) Unirrigated. (viii) 1 weeding. (ix) Nil. (x) N.A.

2. TREATMENTS :

Main-plot treatments :
2 levels of lime : $\mathrm{L}_{0}=$ Without lime, $\mathrm{L}_{1}=20 \mathrm{md} . / \mathrm{ac}$. of slaked lime.
Sub-plot treatments :
7 sources of $\mathrm{N}: \mathrm{A}_{1}=$ Control, $\mathrm{A}_{2}=40 \mathrm{lb} . / \mathrm{ac}$. of N as cow-dung, $\mathrm{A}_{3}=40 \mathrm{lb}$./ac. of N as oilcake, $\mathrm{A}_{4}=20$ $\mathrm{lb} . / \mathrm{ac}$. of N as cow-dung +20 lb ./ac. of N as $\mathrm{C} / \mathrm{N}, \mathrm{A}_{5}=40 \mathrm{lb} / \mathrm{ac}$. of N as $\mathrm{C} / \mathrm{N}, \mathrm{A}_{6}=20$ lb ./ac. of N as cow-dung +20 lb ./ac. of N as A / S and $\mathrm{A}_{7}=40 \mathrm{lb}$./ac. of N as A / S.

DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/replication; 7 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) and (b) $40^{\prime} \times 22^{\prime}$. (v) No. (vi) Yes. ,
4. GENERAL:
(i) Nil. (ii) Nil. (iii) Grain yield. (iv) (a) 1954-1956. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) Nil. (vii) Expt. was conducted by Agri. Chemist.
5. RESULTS :
(i) $184 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $36 \mathrm{lb} . / \mathrm{ac}$. (b) $28 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effect of A and interaction $\mathrm{A} \times \mathrm{L}$ are highly significant. (iv) Av. yield of grain in lb./ac.

	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}	A_{7}	Mean
L_{0}	83	264	206	74	173	165	182	164
L_{1}	140	305	248	115	189	215	223	205
Mean	111	284	227	95	181	190	202	184

S.E. of difference of two

1. L marginal means
$=11.12 \mathrm{lb} . / \mathrm{ac}$.
2. A marginal means
$=16.17 \mathrm{lb} . / \mathrm{ac}$.
3. A means at the same level of $L=22.87 \mathrm{lb} . / \mathrm{ac}$.
4. L means at the same level of $A \quad=23.90 \mathrm{lb} \cdot / \mathrm{ac}$.

Crop :- Paddy ($A h u$).
Site :- Govt. Agri. Farm, Jorhat.

Ref :- As. 55(31).
Type :- ' ${ }^{\prime}$ '.

Object:-To study the effect of different manures on Paddy in acidic soil under limed and un-limed conditions.

1. BASAL CONDITIONS :

(i) (a) N.A. (b) Mustard. (c) N.A. (ii) (a) Old alluvial, sandy loam and acidic. (b) N.A. (iii) N.A. (iv) (a) $\dot{8}$ ploughings followed by laddering. (b) Broadcasting. (c) to (e) N.A. (v) $200 \mathrm{md} . / \mathrm{ac}$. of cowdung and $200 \mathrm{md} . / \mathrm{ac}$. of compost. (vi) Rangadoria, Ahu (medium). (vii) Unirrigated. (viii) 1 weeding. (ix) Nil. (x) N.A.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54 (17) above.

. 4 GENERAL:

i) N.A. ii) N.A. iii; Grain yield. 'iv, (a’, 1954-1956. b) Yes. (c) No. (v) (a) and © b. N.A. (vi) 1956 expt. failed due to drought. vii), Expt. was conducted by Agri. Chemist.
5. RESULTS:
(i) 489 lb .'ac. (ii) (a) 50 lb .ac. b) 83 lb ./ac. (iii; Interaction $\mathrm{A} \times \mathrm{L}$ is significant and main effect of A is highly significant. (iv; Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}	A_{7}	Mean
L_{0}	231	627	710	446	462	330	594	486
L_{1}	198	479	$\bigcirc 61$	561	578	347	726	493
Mean	214	553	635	503	520	338	660	489

S.E. of difference of two

1. L marginal means
$=15.43 \mathrm{lb} . / \mathrm{ac}$.
2. A marginal means
$=47.92 \mathrm{lb} . / \mathrm{zc}$.
3. A means at the same level of L
$=67.76 \mathrm{Jb} ., \mathrm{ac}$.
4. L means at the same level of $A \quad=64.61 \mathrm{lb} . / \mathrm{ac}$.
Grop :- Paddy (Ahu).
Site :- Govt. Agri. Farm, Jorhat.

Ref:- As. 57(37).
Site :- Govt. Agri. Farm, Jorhat.
Object :-To study the effect of different manures and methods of application on Paddy.

1. BASAL CONDITIONS:
i a N.A. b: Mustard. © 100 md . ac. of cow-dung +40 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$. 'ii', (a', Old alluvia', sardy loam and acidi: b^{\prime} N.A. iii` N.A. (iv' a) 6 ploughings followed by laddering. (b, Broadcasting. c. 1.25 md . ac. 'd and 'e N.A. 'v 100 md .'ac. of cow-dung. vi) Rangadoria, Ahu ؛medium:. 〈vii) Unirrigated. :viii 1 weeding. 'ix' and ' x ' N.A.
2. TREATMENTS :

6 manurial treatments with methods of cpplication: $M_{0}=0, M_{1}=40 \mathrm{lb}$.'ac. of N as oilcake, $M_{2} M_{1}+40$ ib. ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super (broadcasting, $\mathrm{M}_{3}=\mathrm{M}_{4}: 40$ lb./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Kaiha phosphate (broadcasting), $\mathrm{M}_{4}=$ \mathbf{M}_{2} 'placement) and $\mathbf{M}_{\mathbf{5}}-\mathrm{M}_{3}$ (placement'.
3. DESIGN:
i. R.B.D. ii' 'a. 6. (b) $132^{\prime} \times 40^{\prime}$. (iii 3. (iv) (a' and 'b' $40^{\prime} \times 22^{\prime}$. (v) No. (vi' Yes.
4. GENERAL :
 Nil. vii Expt. was condusted by Agri. Chemist.
5. RESULTS:
i) 923 lb ac. ii: 465 lb .'ac. Tii Treatment differences are not significant. (iv: Av. yield of grain in lb. ac.

Trazatnent	M_{3}	M_{1}	M_{2}	M_{3}	M.	M_{5}
Av. yield	792	1246	866	784	627	1221
	S.E. mean	$=$	$268 \mathrm{lb} ., \mathrm{ac}$.			

Crop:- Paddy ${ }^{\prime}$ I/ $/$ '.
Site :- Govt. Agri. Farm, Jorhat.

Ref :- As. 58(27).
Type :- ' $\mathbf{M '}^{\prime}$.

Object:-To stiady :he effert of different manures and methods of application on Paddy.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Mustard. (c) $100 \mathrm{md} . / \mathrm{ac}$. of cow-dung +40 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$. (ii) (a) Old alluvial, sandy loam and acidic. (b) N.A. (ii) N.A. (iv) (a) 6 ploughings followed by laddering. (b) Broadcasting. (c) $1.25 \mathrm{mds} / \mathrm{ac}$. (d) and (e) N.A. (v) $100 \mathrm{md} / \mathrm{ac}$. of cowdung. (vi) Rangadoria, Ahu (medium). (vii) Unirrigated. (viii) 1 weeding. (ix) and (x) N.A.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. $57(37)$ on page 2.
4. GENERAL :
(i) Fair (ii) Nil. (iii) Grain yield. (iv) (a) 1957-1959. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) Nil. (viii) Expt. was conducted by Agri. Chemist.
5. RESULTS :
(i) $1053 \mathrm{lb} . / \mathrm{ac}$. '(ii) $258 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are significant. (iv) Av. yield of grain in lb./ac.

Treatment	M_{0}	M_{1}	$\mathrm{M}_{\mathbf{2}}$	M_{3}	M_{4}	M_{5}
Av. yield	536	974	1094	1114	1213	1386
	S.E./mean	$=$	$149 \mathrm{lb} . / \mathrm{ac}$.			

```
Crop := Paddy (Ahu). Ref:- As. 59(30).
Site :- Govt. Agri. Farm, Jorhat. Type :- ' \(\mathbb{M}^{\prime}\).
```

Object :-To study the effect of different manures and methods of application on Paddy.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Matikalai. (c) 0,40 and 60 lb ./ac. of N as cow-dung and 0,40 and 60 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super. (ii) (a) Old alluvial, sandy loam and acidic. (b) N.A. (iii) N.A. (iv) (a) 6 ploughings followed by laddering. (b) Broadcasting. (c) $1.25 \mathrm{md} . / \mathrm{ac}$. (d) and (e) N.A. (v) $100 \mathrm{mds} . / \mathrm{ac}$. of cow-dung. (vi) Rangadoria, Ahu (medium). (vii) Unirrigated. (viii) 1 weeding. (ix) N.A. (x) N.A.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. $57(37)$ on page 2.
4. GENERAL :
(i) and (ii) N.A. (iii) Grain yield. (iv) (a) 1957-1959. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) Nil. (vii) Expt. was conducted by Agri. Chemist.
5. RESULTS :
(i) $1079 \mathrm{lb} . / \mathrm{ac}$. (ii) $164 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in lb ./ac.

Treatment	$\mathbf{M}_{\mathbf{0}}$	$\mathbf{M}_{\mathbf{1}}$	$\mathbf{M}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{3}}$	$\mathbf{M}_{\mathbf{4}}$	$\mathbf{M}_{\mathbf{5}}$
Av. yield	639	875	1085	1093	1370	1413
	S.E. $/$ mean	$=95 \mathrm{lb} . / \mathrm{ac}$.				

Grop :- Paddy (Sali).
Gite :- Agri. College, Jorhat.
Ref:- As. 58(42).
Type :- ${ }^{\prime} \mathbf{M}^{\prime}$.

Object :-To find out best method of application of N to Paddy.

1. BASAL CONDITIONS :

(i) (a) N.A. (b) Paddy (Ahu). (c) 50 mds ./ac. of cowdung. (ii) (a) Sandy loam. (b) N.A. (iii) 16.8 .1958 (iv)
(a) 4 ploughings followed by laddering. (b) Transplanting. (c) N.A. (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) 2 to 3 . (v) $40 \mathrm{mds} . / \mathrm{ac}$. of cow-dung. (vi) Prasad bhog. (vii) Unirrigated. (viii) Nil. (ix) N.A. (x) 8.12.1958.

2. TREATMENTS :

All combinations of ' 1 ' and : 2 '
(1: 3 levels of N as $\mathrm{A}^{\prime} \mathrm{S}: \mathrm{N}_{0}=20, \mathrm{~N}_{\mathrm{I}}=40$ and $\mathrm{N}_{2}=60 \mathrm{lb}$.'ac.
(2) 2 methods of application : $\mathrm{M}_{1}=$ Broadcast and $\mathrm{M}_{2}=$ On sub-surface.
3. DESIGN :
(i) Fact. in R.B.D. (ii)' $\left.a^{\prime}\right\}^{\prime} 6$. (b) N.A. (iii) 4 . (iv) (a' and 'b) $60^{\prime} 10^{\prime \prime} \times 12^{\prime}$. (v) No. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Nil. (iii) Grain yield. (iv' (a) No. (b) N.A. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1202 \mathrm{lb} . / \mathrm{ac}$. (ii) 269 lb ./ac. (iii) Only main effect of M is highly significant. (iv) Av. yield of grain in lb./ac.

	N_{0}	$\mathrm{~N}_{1}$	$\mathrm{~N}_{2}$	Mean
M_{1}	1506	1244	1343	1364
M_{2}	1088	1173	860	1040
Mean	1297	1208	1101	1202

$$
\begin{array}{ll}
\text { S.E. of M marginal mean } & =77.6 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of } N \text { marginal mean } & =95.1 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of body of table } & =134.5 \mathrm{lb} . / \mathrm{ac} .
\end{array}
$$

```
Crop :- Paddy (Ahu). Ref :- As. 58(43).
Site :- Agri. College, Jorhat. Type :- 'M'.
```

Object :-To find out suitable dose of N for double cropped Paddy.

1. BASAL CONDITIONS :
(i) (a; N.A. (b; Paddy ; sali). (c) $50 \mathrm{md} . / \mathrm{ac}$. of cow-dung. (ii) (a) Sandy loam. (b) (pH-4.5). N.A. (iii) 11.4.1958. iv; (a) 4 ploughings followed by laddering. (b) Broadcasting. (c) 30 srs ; ac . (d) and (e) N.A. , v) 50 md . ac. of cow-dung broadcast bafore sowing. (vi) Rangadoria Ahu (medium;. 'vii) Unirrigated. (viii) Nil. (ix: N.A. (x) 1.7.1958.
2. TREATMENTS :

4 levels of N as $\mathrm{A}: \mathrm{S}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20, \mathrm{~N}_{2}=40$ and $\mathrm{N}_{3}=60 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
(i, R.B.D. ii: , à 10 ; 4 plots under N_{0}, 2 each under N_{1}, N_{2} and N_{3}). (b) N.A. (iii) 3 . (iv) (a) and (b) $61 \frac{1}{2}^{\prime} \times 7^{\prime}$. (s Nil. (vi) Yes.
4. GENERAL :
i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a; 1958-contd. (b) Yes. (c) Nil. (v) (a) and :b) N.A. vi; and vii; Nil.
5. RESULTS:
(i) 1697 lb . 'ac. 'ii', 220 lb .'ac. (iii), Treatment differences are not significant. (iv) Av. yield of grain in lb.jac.

Treatment	N_{0}	$\mathrm{~N}_{1}$	$\mathrm{~N}_{2}$	$\mathrm{~N}_{3}$
Av. yield	1652	1744	1676	1761
	S.E. of N_{0} mean			
		$=63.5 \mathrm{lb} . / \mathrm{ac}$.		
	S.E. of any other mean			
		$=89.8 \mathrm{lb} . / \mathrm{ac}$.		

Crop :- Paddy (Sali).
 Site :- Agri. College, Jorhat.

Ref :- As. 58(39).
Type :- 'M'.
Object :-To find out suitable dose of N for double cropped Paddy.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy (Ahu). (c) As per treatments. (ii) (a) Sandy loam. (b) N.A. (iii) 23.8.1958. (iv)
(a) 4 ploughings followed by laddering. (b) Transplanting. (c) $20 \mathrm{srs} / \mathrm{ac}$. (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) 3 to 4 . (iv) 40
lb./plot of T.C. (vi) Laudumra. (vii) Unirrigated. (viii) Nil. (ix) N.A. (x) 17.12.1958.
'2. TREATMENTS and 3. DESIGN :
Same as in expt. no. 58 (43) on page 4.
2. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1958 -contd. (b) Yes. (c) Nil. (iv) (a) and (b) N.A.
(vi) and (vii) Nil.
3. RESULTS :
(i) $2309 \mathrm{lb} . / \mathrm{ac}$. (ii) $233 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb./ac.

Treatment	N_{0}	$\mathrm{~N}_{1}$	$\mathrm{~N}_{2}$	$\mathrm{~N}_{3}$	
Av. yield	2327	2386	2066	2436	
	S.E. of N_{0} mean				
	S.E. of any other mean	$=95.1 \mathrm{lb} . / \mathrm{ac}$.			
	$/ \mathrm{ac}$				

Crop :- Paddy (Ahu).	Ref :- As. $59(36)$.
Site :- Agri. College, Jorhat.	Type :- ‘M'.

Object:-To find out suitable dose of N for double cropped Paddy.

1. BASAL CONDITIONS :
(i) N.A. (b) Paddy (Sali). (c) As per treatments. (ii) (a) Sandy loam. (b) N.A. (iii) 3.4.1959. (iv) (a) 4 ploughings followed by laddering. (b) Broadcasting. (c) $30 \mathrm{srs} / \mathrm{ac}$. (d) and (e) N.A. (v) $80 \mathrm{lb} . / \mathrm{plot}$ of cow-dung. (vi) Rangadoria Ahu (medium). (vii) Unirrigated. (viii) Nil. (ix) N.A. (x) 7.7.1959.
2. TREATMENTS' and 3. DESIGN :

Same as in expt. no. 58(43) on page 4.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1958 -contd. (b) Yes. (c) Nil. (v) (a) and (b) N.A.
(vi) and (vii) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) 1607 lb ./ac. (ii) $221 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of grain in $\mathrm{Ib} . / \mathrm{ac}$.
$\left.\begin{array}{lcccc}\text { Treatment } & \mathrm{N}_{0} & \mathrm{~N}_{1} & \mathrm{~N}_{2} & \mathrm{~N}_{3} \\ \text { Av. yield } & 1564 & 1556 & 1590 & 1762\end{array}\right]$.

Crop :- Paddy (Sali).
Site :- Agri. Gollege, Jorhat.

Ref :- As. 59(37).
Type :- ${ }^{\prime} \mathbf{M}^{\prime}$.

1. BASAL CONDITIONS :

(i) (a) N.A. (b, Paddy 'Ahu'. (c) As per treatments. (ii) (a) Sandy loam. (b) N.A. (iii' 22.8.1959. (iv); (a) 4 ploughings followed by laddering. (b) Transplanting. (c) $20 \mathrm{srs} / \mathrm{ac}$. (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e), 3 to 4 . (v) 30 lb ./plot of T.C. '(vi) Laudumra. (vii) Unirrigated. (viii) Nil. (ix) N.A. (x) 18.12.1959.
2. TREATMENTS and 3. DESIGN :

Same as in expt. on. $58(43)$ on page 4.
4. GENERAL :
i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1958 -contd. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
'i) 1875 lb .'ac. (ii) 146 lb ./ac. (iii) Treatment differences are not significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	N_{0}	$\mathrm{~N}_{1}$	$\mathrm{~N}_{2}$	$\mathrm{~N}_{3}$
Av. yield	1844	1936	1775	1978

S.E. of N_{0} mean	$=42.1 \mathrm{lb} \cdot / \mathrm{ac}$.
S.E. of any other mean	$=59.6 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Ref :- As. 54(13).
Site :- Rice Expt. Stn., Karimganj.
Type :- 'M'.

Object :-To investigate the possibility of increasing Paddy yield by catalysing the release of plant nutrients.

1. BASAL CONDITIONS :
(i)' 'a) No. (b' Paddy. (c) As per treatments. (ii) (a', Clay loam. (b) N.A. (iii) 30.3.1954. (iv) (a) 8 ploughings followed by laddering. (b) Broadcasting. (c) 100 lb .jac. (d) and (e) N.A. (v) $100 \mathrm{md} . / \mathrm{ac}$. of cow-dung at ploughing. (vi) M-142 koimurali (early'. (vii) Unirrigated. (viii) 2 weedings and 2 heeings. ix 93.28". ' x ; 5.7.1954 and 6.7.1954.
2. TREATMENTS:
$\mathrm{T}_{1}=$ Control.
$T_{2}=16 \mathrm{lb} . / \mathrm{ac}$. of Potassium Permanganate.
$\mathrm{T}_{3}: 28 \mathrm{lb}$./ac. of Ferrous Sulphate.
3. DESIGN :
(i) R.B.D. ii) (a) 3. (b) $66^{\prime} \times 30^{\prime}$. (iii) 6 . (iv' 'a) $66^{\prime} \times 10^{\prime}$. (b) $64^{\prime} \times 8^{\prime}$. (v) 1^{\prime} alround the net plot. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) Grain yield. (iy) (a) 1953-1955. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1645 \mathrm{lb} . / \mathrm{ac}$. (ii) $199.9 \mathrm{lb} . / \mathrm{ac}$. iiii) Treatment differences are not significant. (iv) Av. yield of grain in lb. ac.

Treatment	T_{1}	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$
Av. yield	1646	1609	1680
	S.E./mean	$=81.60 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Paddy (:harifj.	Ref :- As. 55(24).
Site :- Rice Expt. Stn., Karimganj.	Type :- 'M'.

Object :-To investigate the possibility of increasing Paddy yield by catalysing the release of plant nutrients.

1. BASAL CONDITIONS :
(i) (a) No. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) N.A. (iii) 1.5.1955. (iv) (a) 8 ploughings followed by laddering. (b) Broadcasting. (c) $100 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) N.A. (v) $100 \mathrm{md} . / \mathrm{ac}$. of cow-dung at ploughing. (vi) $\mathrm{M}-142$ koimurali (early). (vii) Unirrigated. (viii) 2 weedings and 2 hoeings. (ix) $144.5^{\prime \prime}$. (x) 25.7 .1955 to 1.8 .1955.
2. TREATMENTS and 3. DESIGN :

Same as in expt. $54(13)$ on page 6.
4. GENERAL :
(i) and (ii) N.A. (iii) Grain yield. (iv) (a) 1953-1955. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $2564 \mathrm{lb} / \mathrm{ac}$. (ii) $142.9 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb ./ac.

Treatment	T_{1}	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$
Av. yield	5007	2572	2621

S.E. $/$ mean $=58.34 \mathrm{lb} . / \mathrm{ac}$.

```
Grop :- Paddy (Rabi).
Site :- Rice Expt. Stm., Karimgamj.
Ref :- As. 56(33).
Type :- 'M'
```

Object :-To study the effect of different sources of N on Paddy.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy. (c) 100 md ./ac. of cow-dung. (ii) (a) Clay loam. (b) N.A. (iii) 4.7.1956/26.8.1956. (iv) (a) 8 ploughings followed by laddering. (b) Transplanting. (c) N.A. (d) $9^{\prime \prime} \times 9^{\prime \prime}$, (e) 4 . (v) 100 md /ac. of cow-dung applied before ploughing. (vi) S.E. 412-56 (swarnasail). (vii) Unirrigated. (viii) One mulching with weeding by Japanese weeder. (ix) $65.75^{\prime \prime}$. (x) 21 and 22.12.1956.
2. TREATMENTS:
$\mathrm{T}_{1}=$ Control.
$\mathrm{T}_{2}=200 \mathrm{lb} . / \mathrm{ac}$. of C / N.
$\mathrm{T}_{3}=155 \mathrm{lb} . / \mathrm{ac}$. of A / S.
3. DESIGN :
(i) R.B.D. (ii) (a) 3 . (b) $60.75^{\prime} \times 32.25^{\prime}$. (iii) 4 . (iv) (a) $20.25^{\prime} \times 32.25^{\prime}$. (b) $19.50^{\prime} \times 31.50^{\prime}$. (v) One
row alround the net plot. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) No. (iii) Grain yield. (iv) (a) 1956-1957. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 2838 lb ./ac. (ii) 310.6 lb ./ac. (iii) Treatment differences are not significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	T_{1}	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$
Av. yield	2682	3010	2823
	S.E. $/$ mean	$=$	$155.3 \mathrm{lb} . / \mathrm{ac}$.

```
Grop :- Paddy (Rabi).
Ref :- As. 57(27).
Site :- Rice Expt. Stn., Karimganj.
Type :- 'M'.
```

Object :-To study the residual effect of different sources of N on Paddy.

I. BASAL CONDITIONS :

(i) (a) No. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) N.A. (iii) 30.6.1957/28, 29.8.1957. (iv) (a) 8 ploughings followed by laddering. (b) Transplanting. (c) - . (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) 4 . (v) 100 md ,ac. of cow-dung applied before ploughing. (vi) S. C. 412-56 (Swarnasail). (vii) Unirrigated. (viii) One weeding. (ix) $65.75^{\prime \prime}$. (x) 6.121957.
2. TREATMENTS and 3. DESIGN:

Same as in expt. no. 56;33; on page 7.
100 mds of cow-dung per acre applied in the previous year as a basal dose in all the plots.
4. GENERAL :
(i) Crop lodged. (ii) Nil. (iii) General growth and grain yield. (iv) (a) 1956-1957. (b) Yes. (c) No. (v) 'a' and 'b) N.A. (vi) and 'vii) Nil.
5. RESULTS :
(i) 2944 lb ./ac. (ii) 341.2 lb ./ac. (iii) Treatment differences are not significant. (iv) Av, yield of grain in lb./ac.

Treatment	T_{1}	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$
Av. yield	3007	2932	2893
	S.E./mean	$=$	$170.6 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Rabi).
Site :- Rice Expt. Stn., Karimganj.

Ref :- As. 57(29).
Type :- ' \mathbf{M} '.
Object :-To stujy the effe=t of combinations of N, P and K on Paddy.

1. BASAL CONDITIONS :
(i) (a) No. (b) Paddy. (c) 100 md.;ac. of cow-dung. (ii) (a) Clay loam. (b) N.A. (iii) 30.6.1957) 26.8.1957 and 29.8.1957. (iv) (a) 8 ploughings followed by laddering. (b) Transplanted. (c) -. (d) $9^{\circ} \times 9^{\prime \prime}$. .e‘ 4 . iv 100 md 'ac. of cow-dung during pudding. (vi) $\mathrm{S}-22$ (late sail). (vii) Unirrigated. (viii) One weeding. (ix) $7.91^{\prime \prime}$. ' x ' 4.12 .1957 .
2. TREATMENTS :
$\mathrm{T}_{1}=$ Control
$\mathrm{T}_{2}=60 \mathrm{lb}$.'ac. of $\mathrm{N}+30 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}+15 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{K}_{2} \mathrm{O}$
$\mathrm{T}_{3}=40 \mathrm{lb}$ ac. of $\mathrm{N}+20 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}+10 \mathrm{lb}$./ac. of $\mathrm{K}_{2} \mathrm{O}$
$\mathrm{T}_{4}=20 \mathrm{lb}$.'ac. of $\mathrm{N}+10 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}+5 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{K}_{2} \mathrm{O}$
Sources of N, P and K-N.A.
3. DESIGN :
(i) R.B.D. (ii) (a) 4 . (b) N.A. (iii) 4. (iv) (a) $15.75^{\prime} \times 32.25^{\prime}$. (b) $15.0^{\prime} \times 31.5^{\prime}$. (v) One row alround the net ploi. (vi) Yes.
4. GENERAL :
(i) Good but lodged badly. (ii) Slightly affected by stem borer but damage negligible. Affected plants uprooted and destroyed. (iii) Grain yield. (iv) (a) $1957-1959$. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and 'vii: Nil.
5. RESULTS :
(i) 2569 lb. ac. (ii) 197.8 lb . ac. (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb./ac.

Treatment	T_{1}	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$	$\mathrm{~T}_{4}$
Av. yield	2620	2531	2541	2583
	S.E./mean	$=$		

```
Crop :- Paddy.
Site :- Rice Expt. Stn., Karimganj.
Ref :- As. 58(20).
Type :- 'M'.
```

Object :-To study the effect of combinations of N, P and K on Paddy.

1. BASAL CONDITIONS :
(i) (a) No. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam. (b) N.A. (iii) 22.7.1958/8, 9.8.1958.
(iv) (a) 8 ploughings followed by laddering. (b) Transplanting. (c) $4 \mathrm{md} . / \mathrm{ac}$. (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) 4 . (v)
$100 \mathrm{md} . / \mathrm{ac}$. of cow-dung. (vi) S-22 (latisail) (medium). (vii) Unirrigated. (viii) 1 mulching and
1 weeding. (ix) $79.11^{\prime \prime}$. (x) 5.12 .1958.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 57 (29) on page 8.
4. GENERAL :
(i) Lodged badly after maturity
(ii) Nil
(iii) Grain yield.
(iv) (a) 1957-1958.
(b) Yes.
(c) Nil.
(v) (a.) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $2476 \mathrm{lb} . / \mathrm{ac}$. (ii) $118.0 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of grain in . $\mathrm{lb} . / \mathrm{ac}$.

Treatment	T_{1}	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$	$\mathrm{~T}_{4}$
Av. yield	2392	2481	2433	2597
	S.E. $/$ mean	$=$	$59.0 \mathrm{lb} . / \mathrm{ac}$.	

```
Grop :- Paddy (Aus).
Site :- Rice Expt. Stn., Karimganj.
Ref :- As. 58(21).
Type :- 'M'.
```

Object:-To study the effect of different manurial doses on Paddy.

1. BASAL CONDITIONS :
(i) (a) No. (b) Paddy. (c) $100 \mathrm{md} . / \mathrm{ac}$. of cow-dung. (ii) (a) Clay loam. (b) N.A. (iii) 29.5.1958/
$21,22.61958$. (iv) (a) 8 ploughings followed by laddering. (b) Transplanting. (c) $3 \mathrm{mds} / \mathrm{ac}$. (d) $6^{\prime \prime} \times 6^{\prime \prime}$.
(e) 4. (v) Nil. (vi) M-142 Koimurali (medium-Aus). (vii) Unirrigated. (viii) 1 weeding. (ix) $109.4^{\prime \prime}$.
(x) 5.9 .1958.
2. TREATMENTS :
$\mathrm{T}_{0}=$ Control.
$\mathrm{T}_{1}=100 \mathrm{md}$./ac. of cow-dung +10 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super during the preparation of field.
$\mathrm{T}_{2}=$ Mixed fertilizer, 45 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super during the preparation of field +30 lb ./ac. of N as A / S top dressed.
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 4 . (iv) (a) $15.75^{\prime} \times 32.25^{\prime}$: (b) $15.0^{\prime} \times 31.5^{\prime}$. (v) One row alrourd the net plot. (vi) Yes.
4. GENERAL:
(i) Good. (ii) Nil. (iii) Grain yield. (iv) (a) 1958-1960. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1103 \mathrm{lb} . / \mathrm{ac}$. (ii) $276.5 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb ./ac.

Treatment	$\mathrm{T}_{\mathbf{0}}$	$\mathrm{T}_{\mathbf{1}}$	$\mathrm{T}_{\mathbf{2}}$		
Av. yield	1065	1220	1014		
	S.E./mean $=$				$137.4 \mathrm{lb} . / \mathrm{ac}$.

Object :-To study the effect of different manurial doses on Paddy.

1. BASAL CONDITIONS :

i) (a) No. (b, Paddy. (c), As per treatments. (ii) (a, Clay loam. (b) N.A. (iii) 11.9.1959. iv, (a) 8 ploughings followed by weeding and laddering. (b) Transplanting. (c) $3 \mathrm{md} . / \mathrm{ac}$. in seed bed. (d, $6^{\prime \prime} \times 6^{*}$. ie; 4. (\mathbf{v} ', Nil. (vi, M-142 Koimurali (medium). vii; Unirrigated. (viii) 1 weeding. (ix; $113.9^{\prime \prime}$. (x: 7, 8 and 13.8.1959.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. $58 \div 21$, on page 9.
4. GENERAL :
(i) Good. (ii) Nil. iii〉Grain yield. (iv) (a) $1958-1960$. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and vii) Nil.
5. RESULTS :
(i) 2415 lb. 'ac. ,ii' $\mathbf{1 0 3 . 2} \mathrm{lb}$. ac. (iii) Treatment differences are not significant. (iv) Av. yield of gran in lb.jac.

Treatment	T_{0}	T_{1}	T_{2}
Av. yield	2367	2330	2548
	S.E.mean $=$	$51.62 \mathrm{lb} . / \mathrm{ac}$.	

```
Crop :- Paddy (Sali).
Site :- Rice Expt. Stn., Karimganj.
```


Ref :- As. 58(23).
 Type :- 'M'.

Object :-To study the effect of treating seedlings with solution of $\mathrm{A}_{i} \mathrm{~S}$.

1. BASAL CONDITIONS:
(i. a: No. b; Paddy. 'c; 100 md. 'ac. of cow-dung. (ii' a', Clay loam. (b) N.A. iiii) 22.7.1958 1.9.1958.
(iv), a 8 ploughings followed by laddering. (b: Transplanting. (c 2_{2}^{\prime} mds.;ac. id) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) 2. v; 200 lb . 'ac. of mixed fertilizer and $100 \mathrm{md} . / \mathrm{ac}$. of cow-dung in seed bed. $40 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A}, \mathrm{S}, 40 \mathrm{~b}$ ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super and 100 md . ac. of cow-dung applied during the preparation of field. vi' $\mathrm{S}-22(\mathrm{~h} \cdot \mathrm{i}$ ail, medium; . ¡vii' Unirrigated. 'viii) 2 weedings. (ix 79.11". ' x ', 29.11.1958.
2. TREATMENTS:
T_{0} - Control.
$\mathrm{T}_{1}=8 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{A}_{1} \mathrm{~S}$ top dressed in seed bed 5 days before uprooting the seedling.
$\mathrm{T}_{2}=$ Dipping the roots of seedlings in 8 lb ., ac. of A / S solution (about 1%).
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 5. (iv) (a) $15.75^{\prime} \times 10.50^{\prime}$. 'b; $15.0^{\prime} \times 9.75^{\prime}$. (w) One row alround the net plot. (vi) Yes.

4, GENERAL:
(i) Crop lodged badly on 12.11.1958. (ii) Nil. (iii) Grain yield. (iv, (a) 1958-1960. (b. Yes. c' N.A. (\mathbf{v} ', 'a, and 'b) N.A. (vi) and 'vii! Nil.
5. RESULTS :
(i) $2426 \mathrm{lb} . / \mathrm{ac}$. (ii) $68 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in lb./ac.

Treatment	$\mathrm{T}_{\mathbf{0}}$	T_{1}	$\mathrm{~T}_{\mathbf{2}}$
Av. yield	2334	2539	2405

S.E. mean $=30 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Sali).

Site :- Rice Expt. Stn., Karimganj. .

Ref:- As. 59(20).
Type :- ${ }^{\prime} \mathbb{M}^{\prime}$.

Object :-To study the effect of treating seedlings with solution of A/S.

1. BASAL CONDITIONS :
(i) (a) No. (b) Paddy. (c) $100 \mathrm{md} . / \mathrm{ac}$. of cow-dung, $40 \mathrm{lb} . / \mathrm{ac}$. of N as A / S and 40 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super. (ii) (a) Clay Loam. (b) N.A. (iii) $26.6 .1959 / 5.8 .1959$. (iv) (a) 8 ploughings followed by weeding and laddering. (b) Transplanting. (c) $2 \frac{1}{2} \mathrm{mds}$./ac. in seed bed. (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) 2 . (v) $200 \cdot \mathrm{lb}$./ac. of mixed fertilizer $+100 \mathrm{md} . / \mathrm{ac}$. of cow-dung in seed bed. $40 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}, 40 \mathrm{lb}$./ac. of $\mathrm{P}_{\varepsilon} \mathrm{O}_{5}$ as Super and $100 \mathrm{md} . / \mathrm{ac}$. of cow-dung applied during the preparation of field. (vi) $\mathrm{S}-22$ (latisail, mediurn). (vii) Unirrigated. (viii) 2 weedings. (ix) $68.31^{\prime \prime}$. (x) 9.12.1959.
2. TKEATMENTS and 3. DESIGN :

Same as in expt. no. $58(23)$ on page 10.
4. GENERAL :
(i) Lodged after maturity. (ii) Nil, (iii) Grain yield. (iv) (a) $1958-1960$. (b) Yes. (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $2808 \mathrm{lb} . / \mathrm{ac}$. (ii) 340 lb ./ac. (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb ./ac.

Treatment	T_{0}	$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$
Av. yield	2670	2849	2905
	S.E./mean	$=$	$152 \mathrm{lb} . / \mathrm{ac}$.

Grop :- Paddy (Sali).
Site :- Rice Expt. Stn., Karimganj.

Ref :- As. 58(24).
Type :- 'M'.
Object :-To study the effect of top dressing A/S on Paddy yield.

1. BASAL CONDITIONS :
(i) (a) No. (b) Paddy. (c) $100 \mathrm{md} . / \mathrm{ac}$. of cow-dung. (ii) (a) Clay loam. (b) N.A. (iii) 22.7 .1958 / 1.9.1958. (iv) (a) 8 ploughings followed by weeding and ladderings. (b) Transplanting. (c) $2 \frac{1}{2}$ mds/ac. (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) 2 . (v) 200 lb ./ac. of mixed fertilizer and $100 \mathrm{md} . / \mathrm{ac}$. of cow-dung in seed bed, 40 lb ./ac. of N as $\mathrm{A} / \mathrm{S}, 40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super and $100 \mathrm{md} / \mathrm{ac}$. of cow-dung applied during the preparation of field. (vi) S-22 (latisail medium). (vii) Unirrigated. (viii) 2 weedings. (ix) $79.11^{\prime \prime}$. (x) 28.11 .1958 .
2. TREATMENTS:
$\mathrm{T}_{0}=$ Control.
$\mathrm{T}_{1}=50 \mathrm{lb} . / \mathrm{ac}$. of A / S top dressed at earing stage.
3. DESIGN :
(i) R.B.D.
(ii) (a) 2 .
(b) N.A. (iii) 5 .
(iv) (a) $15.75^{\prime} \times 10.50^{\prime}$.
(b) $15.00^{\prime} \times 9.75^{\prime}$.
(v) One row alround. (vi) Yes.
4. GENERAL :
(i) Crop lodged on 12.11 .1958 . (ii) Nil. (iii) Grain yield. (iv) (a) $1958-1960$. (b) Yes. (c) NA.
(v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $2179 \mathrm{lb} . / \mathrm{ac}$. (ii) $114 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment difference is significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	T_{0}	$\mathrm{~T}_{1}$
Av." yield	2071	2287
	S.E./mean	$=51 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Sali;
Ref :- As. 59(21).
Site :- Rice Expt. Stn., Karimganj.
Object :-To study the effect of top dressing A_{i} 'S on Paddy yield.

1. BASAL CONDITIONS :
(i)' 'a) No. 'b' Paddy. 'c' 100 md. 'ac. of sow-dung. (ii, 'a; Clay loam. (b) N.A. (iii) $26.6 .1959 /$ 6.8.1959. iv) a: 8 ploughings followed by weeding and laddering. (b; Transplanting. (c) 21 mds ac. in seed bed. (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e; 2. (v) 200 lb ./ac. of mixed fertilizer and 100 md ./ac of cow-dung in seed bed. 40 lb /ac. of N as $\mathrm{A} / \mathrm{S}, 40 \mathrm{lb}$.'ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super and 100 md .'ac. of cowdung applied during the preparation of feld. (vi) S-22 (hatisail, medium). (vii; Unirrigated. (viii' 2 weedings. 'ix', $68.31^{\prime \prime}$. (x) 9.12.1959.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 58 (24; on page 11.
4. GENERAL :
(i) Lodged after maturity. 'ii; Nil. (iii; Grain yieid. (iv) (a) 1958-1960. (b) Yes. (c) No. (v) (a) and , b; N.A. (vi) and (vii) Nil.
5. RESLLTS :
(i $2051 \mathrm{lb} . / 3 \mathrm{c}$. ii) 309 lb. 'ac. ;iii) Treatment difference is not significant. (iv) Av. yield of grain in Ib, iac.

Treatment	T_{0}	T_{1}
Av. yield	$27 \% 9$	2923

$$
\text { S.E.',mean = } 138 \mathrm{lb} ., \mathrm{ac}
$$

```
Crop :- Paddy (Sali).
Site :- Rice Expt. Stn., Karimganj.
Ref :- As. 59(22).
Type :- 'M'.
```

Obje :t : - To study the effect of combinations of different doses of manures on Paddy.

1. BASAL CONDITIONS:
(i) 'a No. (b) Faddy. 'c $100 \mathrm{md} . / \mathrm{ac}$. of cow-dung. (ii) (a; Clay loam. (b) N.A. (iii) 11.6.1959 3 and 4.8.1959. is: ;a; 8 ploughings followed by laddering. (b) Transplanting. (c) 3 ! mds'ac. in seed bed. (d; $9^{\prime \prime} \times 9^{\circ}$. e, 3 . 'v Nil. (vi; $\mathrm{S}-22$ (hatisail, medium'. (vii) Unitrigated. (viii 1 weeding. (ix' 68.31". (x) 11 to 14.12.1959.
2. TREATMENTS :
$\mathrm{T}_{0}=$ Control.
$\mathrm{T}_{1}=20 \mathrm{lb}$.'ac. of $\mathrm{N}+30 \mathrm{lb}$.,'ac. of $\mathrm{P}_{2} \mathrm{O}_{5}+15 \mathrm{lb}$./ac. of $\mathrm{K}_{2} \mathrm{O}$.
$\mathrm{T}_{2}=20 \mathrm{lb}$. $/ \mathrm{ac}$. of $\mathrm{N}+20 \mathrm{lb}$. ac . of $\mathrm{P}_{2} \mathrm{O}_{5}+10 \mathrm{lb}$./ac. of $\mathrm{K}_{2} \mathrm{O}$.
$\mathrm{T}_{3}=20 \mathrm{lb} . \mathrm{ac}$. of $\mathrm{N}+10 \mathrm{lb}$.'ac. of $\mathrm{P}_{2} \mathrm{O}_{5}+5 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{K}_{2} \mathrm{O}$.
3. DESIGN:
(i) R.B.D. (ii), (a, 4. (b) $60^{\prime} \times 32.5$. (iii) 4 . (iv) (a) $15^{\prime} \times 32.5^{\prime}$. (b) $14.25^{\prime} \times 31.75^{\prime}$. (v) One row alround.
, vi) Yes.
4. GENERAL :
(i) Lodged after maturity. (ii) Nil. (iii) Grain yield. (iv) (a) 1959-1961. (b) Yes. (c) No. (v) (a) and (b) N.A. (vi) and (vii; Nil.
5. RESULTS :
(i) 3486 lb .'ac. ;ii) 291 lb . ac. (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb./ac.

Treatment	T_{0}	$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$
Av. yield	3449	3416	3514	3565
	S.E.imean	$=$	$145 \mathrm{lb} . / \mathrm{ac}$.	

```
Grop :- Paddy (Bao).
Ref :- As. 54(4).
```

Site :- Deep Water Paddy Res. Str., Roha.
Object :-To obtain suitable manure for deep water Paddy.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) Paddy. (c) Nil. (ii) (a) Loamy. (b) Refer below. (iii) 822.5 .1954 , (iv) (a) Weeding. (b) to (e) N.A. (v) Nil. (vi) Sail badal. (vii) Unirrigated. (viii) Weeding. (ix) N.A. (x) 25.12.1954.

2. TREATMENTS :

$\mathrm{T}_{0}=$ Control.
$T_{1}=100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{A} / \mathrm{S}+200 \mathrm{md} . / \mathrm{ac}$. of cow-dung.
$\mathrm{T}_{2}=200 \mathrm{md} . / \mathrm{ac}$. of cow-dung.
$\mathrm{T}_{3}=100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{A} / \mathrm{S}+100 \mathrm{lb} . / \mathrm{ac}$. of B.M.
3. DESIGN :
(i) R.B.D. (ii) (a) 4 . (b) N.A. (iii) 4 . (iv) (a) $10^{\prime} \times 10^{\prime}$. (b) $8^{\prime} \times 8^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) 1954-1956. (b) and (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1110 \mathrm{lb} . / \mathrm{ac}$. (ii) $326.4 \mathrm{lb} . / \mathrm{ac}$.(iii) Treatment differences are not significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	T_{0}	$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$			
Av. yield	896	1086	1364	1092			
	S.E./mean					$=$	$163.2 \mathrm{lb} . / \mathrm{ac}$.

Coarse sand	6.4%	Moisture	3.0%	Avl. $\mathrm{P}_{2} \mathrm{O}_{5}$	0.03%
Fine sand	33.6%	Loss on ignition	5.6%	Avl. $\mathrm{K}_{2} \mathrm{O}$	0.014%
Silt	42.6%	Nitrogen	0.33%	pH (water ext.)	5.1
Clay	16.0%			pH. (KNO_{3} ext.)	4.8
				Acidity ppm.	100.8

Grop :- Paddy (Bao).
Site := Deep Water Paddy Res. Stn., Roha.

Ref :- As. 55(2).
Type:- ' $\mathbf{M} \mathbf{M}$.

Object :-To obtain suitable manure for deep water Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) Nil. (ii) (a) Loamy. (b) Refer expt. no. $54(4)$ above. (iii) N.A. (iv) (a) 5 ploughings and laddering by country method. (b) Broadcast. (c) to (e) N.A. (v) Nil. (vi) Sail badal. (vii) Unirrigated. (viii) Weeding and thinning. (ix) $60^{\prime \prime}$. (x) N.A.
2. TREATMENTS and 3. DESIGN :

Same as in expt. 54(4) above.
4. GENERAL.
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) 1954-1956. (b) and (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $986.9 \mathrm{lb} / \mathrm{ac}$. (ii) $885.9 \mathrm{lb} / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb./ac.

Treatment	T_{0}	$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$
Av. yield	673	1115	1015	1145
	S.E. $/$ mean $=$	$443.0 \mathrm{lb} . / \mathrm{ac}$.		

```
Crop :- Paddy ' \({ }^{\prime} a 3\).
Site :- Deep Water Paddy Res. Stn., Roha.
Ref:- As. 56(2).
Type :- ' \(M\) '.
```

Object:- To obtain suitab'e manure for deep water Paddy.

1. BASAl. CONDITIONS:
(i) a, Vi'. b Paddy. 'c' Nil. ii 'a' Loamy. (b) Refer expt. no. 54 (4 on page 13. (iii) 2.4.1956.
(iv) a' 5 ploughings and laddering with country plough. 'b' Broadcast. (c) to (e) N.A. (v) Nil. (vi)
S.ril badal. vii Unirrigated. 'viii' Weeding. 'ix', 64.41". x 24.11.1956.
2. TREATMENTS :

Same as in expt. no. 544 on page 13.
3. DESIGN:
(i R.B.D. ii' (a: 4. b NA. 'iii) 5. (iv, (a) $12 \times 12^{\prime}$ 'b $10^{\prime} \times 10^{\prime} .\left(\mathrm{v}\right.$ ' 1^{\prime} alround. vi) Yes.
4. GENERAL
(i) Sutisfatory. (ii') Ni'. iii Grain yield. 'iv, 'a, N.A. 'b' and 'c' Nil. 'v) (a ', and 'b, Nil.
vi, and vii Nil.
5. RESLLTS :
; 923.9 lb ac. ii 405.5 lb , ac. iii; Treatment differences are not significant. (iv; Av. yield of grain in lb . 'ac.

Treatment	T_{θ}	T_{1}	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$
Av. yield	875.6	1115.1	855.1	850.7
	S.E. maan	$=$	$181.2 \mathrm{lb} . \mathrm{ac}$.	

```
Crop :- Paddy 'Bur',
Site :- Deep Water Paddy Res. Stn., Roha.
Ref :- As. 54(7).
Type :- 'M'.
```

Ohect :-To obtain suitable manure for deep water Paddy.

1. BASAL CONDITIONS :

iv a! 3 plougaings and laddering with country plough. (b) Transplanting. (c' N.A. (d) $9^{\prime \prime} \times 9^{* *}$.e) 3.
iv Nil. vi' Buro paddy No. II. 'vii) Unirrigated. (viii) Weeding. ($1 x$ ', and ' x ' N.A.
2. TREATMENTS:
$\mathrm{T}_{3}=$ Control.
$\mathrm{T}_{1}=200 \mathrm{ab}$. ac. of cow-dung.
$\mathrm{T}_{2}=100 \mathrm{lb}$. ac . of A, S.
3. DESIGN :
(i R.B.D. ii) (a; 3 . b; N.A. (iii) 3. (iv) (a) $22^{\prime} \times 17^{\prime}$. (b) $20^{\prime} \times 15^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.
4. GENERAL :
(i' and (ii N.A. (iii) Grain yield. (iv, 'a) to ' c’, No. (v ' 'a' and (b) Nil. (vi) and (vii) Nil.
5. RESCLTS :
i) 1586 lb .'ac. 'ii) 1010 lb .'ac. 'iii) Treatment differences are not significant. (iv) Av. yield of grain in lb. ac.

Treatment	T_{\Perp}	T_{1}	$\mathrm{~T}_{2}$
Av. yield	1368	1729	1661
	S.E. mean	$=$	$583.2 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy (Boro).
Site :- Deep Water Paddy Res. Stn., Roha.

Ref :- As. 56(8).
Type :- ' \mathbf{M}^{\prime}.

Object :-To obtain the suitable manure for deep water Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Boro paddy. (c) Nil. (ii) (a) Loamy. (b) Refer expt. no. 54(4) on page 13. (iii) 6.2.1956: (iv) (a) 3 ploughings and laddering with country plough. (b) Transplanted. (c) -. (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Boro No. II. (vii) Unirrigated. (viii) Weeding and thinning (ix) N.A. (x) 205.1956
2. TREATMENTS :

4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=10, \mathrm{P}_{2}=20$ and $\mathrm{P}_{3}=30 \mathrm{lb} . / \mathrm{ac}$.
Source of manure is N.A.
3. DESIGN:
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 4. (iv) (a) $22^{\prime} \times 17^{\prime}$. (b) $20^{\prime} \times 15^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv). (a) 1954-contd. (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $1257 \mathrm{lb} . / \mathrm{ac}$. (ii) $300.3 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb./ac.

Treatment	P_{0}	P_{1}	P_{2}	P_{3}
Av. yield	1121	1216	1507	1186
	S.E. $/$ mean	$=$	$150.2 \mathrm{lb} . / \mathrm{ac}$.	

```
Crop :- Paddy (Boro).
Site :- Deep Water Paddy Res. Stri, Roha.
Ref:- As. 57(36).
Type:-'MP'.
```

Object:-To obtain the suitable manure for deep water Paddy.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) Boro paddy. (c) Nil. (ii) (a) Loamy (b) Refer expt. no. 54(4) on page 13. (iii) 31.1.1957. (iv) (a) 3 ploughings and laddering with country plough. (b) Transplanting. (c) -. (d) $9^{\prime \prime} \times 9^{\prime \prime}$ (e) N.A. (v) Nil. (vi) Boro No. II. (vii) Unirrigated. (viii) Weeding and thinning. (ix) N.A. (x) 21.5.1957.
2. TREATMENTS and 3. DESIGN:

Same as expt. no. 56(8) above.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) 1954 -contd. (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) Nil. (vii) There was one missing value in block II for the treatment P_{3}.
5. RESULTS:
(i) $73.69 \mathrm{lb} . / \mathrm{ac}$. (ii) $67.95 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of grain
in $1 \mathrm{~b} . / \mathrm{ac}$.

Treatment	P_{0}	P_{2}	P_{2}	P_{3}
Av. yield	101.64	34.56	85.81	72.74

S.E./mean except P_{3} mean $=33.98 \mathrm{lb}$./ac. S.E. of difference between P_{3} and any other mean $=53.18 \mathrm{lb} . / \mathrm{ac}$.

```
Crop:- Paddy (Boro).
Ref:- As. 58(5).
Site :- Deep Water Paddy Res. Stn., Roha.
Type :- 'M'.
```

Object:-To obtain the suitable manure for deep water Paddy.

1. BASAL CONDITIONS:
(i) (a. Nil. 'b Boro paddy. 'c' Nil. (ii) 'a' Loamy. 'b Refer expt. no. 54 (4 on page 13. ,iii) 17.11 .19571 2.1.1958. iv: a) 3 ploughings and laddering. b) Line method of transplanting. (c, 一. (d.9* $\times 9^{\prime \prime}$. ec, 3. v Nal. 'vi Boro Vo. 1 'early'. 'vii' Unirrigated. 'viii) Weeding. (ix' 14.82". 'x) 15.5.1958.
2. TREATMENTS:

4 leve!s of $\mathrm{P}_{3} \mathrm{O}_{5}$ as B.M. : $\mathrm{P}_{0}=0, \mathrm{P}_{1}=10, \mathrm{P}_{2}=20$ and $\mathrm{P}_{3}=30 \mathrm{lb} . / \mathrm{ac}$
3. DESIGN :

Same as in expt. no. 56.8; on page 15.
4. GENERAL:
'i' Unsatisfactory, (ii) Nil. 'iii' Grain yield. 'iv' (a) 1954-contd. (b) No. (c) Nil. 'v) (a; and (b', N.A, (vi, and 'vii) N11.
5. RESULTS :
(i) 453.5 lb . ac . ii, 279.6 lb . ac. (iii), Treatment differences are significant. (iv', Av. yield of grain in lb. ac.

Treatment	P_{3}	P_{1}	P_{2}	P_{3}.
Av. yield	578.8	320.2	387.4	527.5
	S.E.'mean	$-139.8 \mathrm{lb} . / \mathrm{ac}$.		

Crop :- Paddy (Bor).	Ref :- As. 59(13).
Site :- Deep Water Paddy Res. Stn., Roha.	Type :- ‘M'.

Object :--To obtain the suitable manure for deep water Paddy.

1. BASAL CONDITIONS :
(i) (a) No. b; Boro paddy. (c; Nil. (ii) (a) Loamy. (b) Refer expt. no. 54'4; on page 13. 'iii' 3.2.1959. N.A. (iv) (a) 3 ploughings and ladderings. (b) Transplanting. (c) 一. (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) 3. (v) Nil. (vi) Bors paddy No. II. (vii; Unirrigated. (viii) 1 weeding. (ix) 13.23^{*}. (x) 10.5.1959.
2. TREATMENTS

Same as in expt. no. 58:5, above.
3. DESIGN :
(i) R.B.D. (ii, (a) 4. (b; $20^{\prime} \times 30^{\prime}$. (iii) 3. (iv', (a; and (b) $10^{\prime} \times 15^{\prime}$. (v) and (vi) Yes.
4. GENERAL :
'i) Satisfactory. (ii) Nil. 'iii' Grain yield. (iv) (a) 1954-contd. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
i) 1451 lb ./ac. 'ii) 160 lb ./ac. (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb ./ac.

Treatment	T_{0}	$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$
Av. yield	1418	1494	1567	1324
	S.E. $/$ mean	$=$	$92.38 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Paddy (Bao).
 Site :- Deep Water Paddy Res. Stn., Roha.

Ref :- As. 57(37)
Type :- ' M '.
Object:-To obtain suitable manure for deep water Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Bao paddy. (c) Nil. (ii) (a) Loamy. (b) Refer expt. no. 54(4) on page 13. (iii) 21.6.1957. (iv)
(a) 4 ploughings followed by laddering. (b) Broadcasting. (c 60 lb ./ac. (d) and (e) 一. (v) Nil. (vi) E.B. No. 1 (Neghari Bao, medium). (vii) Unirrigated. (viii) 1 weeding. (ix) 32.93". (x) 24.11.1957.
2. TRE:ATMENTS :
$\mathrm{T}_{0}=$ Control.
$\mathrm{T}_{1}=100 \mathrm{md} . / \mathrm{ac}$. of cow-dung.
$\mathrm{T}_{2}=200 \mathrm{lb} . / \mathrm{ac}$. of A / S.
$\mathrm{T}_{3}=400 \mathrm{lb} . / \mathrm{ac}$. of mixed fertilizer.
3. DESIGN:
(i) R.B.D.
(ii) (a) 4 .
(b) $32^{\prime} \times 16 \frac{1}{2}^{\prime}$.
(iii) 4
(iv) (a) $8^{\prime} \times 16 \frac{1}{2}^{\prime}$.
(b) $6^{\prime} \times 14_{\frac{1}{2}}$. (v) 1^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) Unsatisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1957-contd. (b) and (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $107 \mathrm{lb} . / \mathrm{ac}$. (ii) $160 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb ./ac.

Treatment	T_{0}	$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$
Av. yield	48	125	173	83
	S.E./mean $=80 \mathrm{lb} . / \mathrm{ac}$.			

Crop:- Paddy (Bao).

Site :- Deep Water Paddy Res. Stn., Roha.

Ref :- As. 58(6).

Type :- 'M'.
Object:--To obtain suitable manure for deep water Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Bao paddy. (c) Nil. (ii) (a) Loamy. (b) Refer expt. no. 54(4) on page 13. (iii) 13.5.1958.
(iv) (a) 4 ploughings, laddering and harrowing. (b) Broadcasting. (c) $60 \mathrm{lb} / / \mathrm{ac}$. (d) and (e) -. (v)

Nil. (vi) E.B. No. 1 (Neghari Bao, medium). (vii) Unirrigated. (viii) 3 weedings. (ix) $52.80^{\prime \prime}$. (x) 18.12 .1958.
2. TREATMENTS :

Same as inl expt. no. 57 (37) above.
3. DESIGN :
(i) R.B.D.
(ii) (a) 4 .
(b) N.A.
(iii) 4. (iv) (a) $10^{\prime} \times 16.5^{\prime}$.
b) $8^{\prime} \times 14.5^{\prime}$.
(v) 1^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Yield of paddy. (iv) (a) 1957-contd. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1715 \mathrm{lb} . / \mathrm{ac}$. (ii) 98.19 lb ./ac. (iii) Treatment differences are significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	T_{0}	$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$
Av. yield	1664	166 I	1647	1891
	S.E./mean	$=$	$49.0 \ni \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Paddy (Bao).
Site :- Deep Water Paddy Res. Stn., Roha.

Ref :- As. 59(14).
Type :- ' \mathbf{M} '.

Object :-To obtain suitable manure for deep water Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Bao paddy. (c) Nil. (ii) (a) Loamy. (b) Refer expt. no. 54 (4) on page 13. (iii) 11.5.59. (iv) (a) 3 ploughings followed by laddering. (b) Broadcasting. (c) 60 lb ./ac. (d) and (e) - . (v; Nil. (vi) E.B. No. 1 (Neghari Bao, medium). (vii) Unirrigated. ' (viii) 3 weedings and hoeing. (ix) 48.99'. ' x) 17.12.1959.

2. TREATMENTS:

Same as in expt. no. 57,37) on page 17.
3. DESIGN :
(i, R.B.D. (ii) (a) 4 . (b) $20^{\prime} \times 30^{\prime}$. (iii) 4 . (iv) (a) and (b) $10^{\prime} \times 15^{\prime}$. (v) 2^{\prime} round the block. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Grain yield. (iv) (a) 1957-contd. (b) No. (c) Nil. (v) (a) and bb) N.A. (vi) and (vii) Nil.
5. RESULTS :
i) $1020 \mathrm{lb} . / \mathrm{ac}$. (ii) $252 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are significant. (iv) Av. yield of grain in lb. 'ac.

Treatment	T_{0}	$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$
Av. yield	689	1067	1030	1295
	S.E./mean	$=$	$126 \mathrm{lb} . / \mathrm{ac}$.	

$$
\begin{array}{ll}
\text { Crop :- Paddy }(A \hbar u) . & \text { Ref :- As. } 54(2) . \\
\text { Site :- Govt. Rice Expt. Stn., Titabar. } & \text { Type :- }{ }^{\prime} \mathbf{M}{ }^{\prime} .
\end{array}
$$

Object:-To study the effect of diff-rent manures on Paddy.

1. BASAL CONDITIONS :
(i) a) Nil. (b) Paddy. (c) Nil. (ii) (a) Clay loam. ${ }^{\prime}$ (b) N.A. (iii) 23.4.1954/20 and 21.5.1954. (iv, (a) One ploughing and laddering. (b) Transplanting in lines. (c) $6 \mathrm{mds} / \mathrm{ac}$. (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) 4 . (v) Nil. (vi) Rangadoria (early). (vii) Unirrigated. (viii) 2 weedings. (ix) and (x) N.A.
2. TREATMENTS :
T_{0} Control.
$\mathrm{T}_{1}=200 \mathrm{lb}$. 'ac. of A/S.
$\mathrm{T}_{\mathrm{z}}-200 \mathrm{md} / \mathrm{ac}$. of cowdung $+200 \mathrm{lb} . / \mathrm{ac}$. of A / S.
$\mathrm{T}_{3}=200 \mathrm{md} / \mathrm{ac}$. of cowdung +200 lb ./ac. of B.M.
$\mathrm{T}_{4}=200 \mathrm{lb} . \cdot \mathrm{ac}$. of $\mathrm{A} / \mathrm{S}+200 \mathrm{lb} . / \mathrm{ac}$. of B.M.
$\mathrm{T}_{5}=200 \mathrm{lb}$. ac . of $\mathrm{A} / \mathrm{S}+200 \mathrm{lb} . / \mathrm{ac}$. of B.M. $+200 \mathrm{md} / \mathrm{ac}$. of cowdung.
Manures broadcast on 14.4.1954.
3. DESIGN :
i; R.B.D. 'ii) (a) 6 . (b) N.A. (iii) 4 . (iv) (a) $20.5^{\prime} \times 15.5^{\prime}$. (b) $20^{\prime} \times 15^{\prime}$. (v) $3^{\prime \prime}$ alround. vi) Yes.
4. GENERAL :
\therefore Fair. (ii; Nil. (iii) Grain yield. (iv) (a) and (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) and 'vii) Nil.

5. RESULTS :

(i) $759.1 \mathrm{lb} . / \mathrm{ac}$. (ii) 140.3 lb ./ac. (iii) Treatment differences are not significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$

Treatment	T_{0}	T_{1}	T_{2}	T_{3}	T_{4}	T_{5}
Av. yield	768.0	692.0	811.1	716.9	703.3	863.2
	S.E./mean	$=$	$70.13 \mathrm{lb} . / \mathrm{ac}$.			

```
Crop :- Paddy (Ahu).
Site :- Govt. Rice Expt. Stn., Titabar.
Ref :- As. 55(6).
Type :- \({ }^{6}\) M'.
```

Object :-To study the effect of manures on Paddy yield.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Ahu paddy. (c) Nil. (ii) (a) Clay loam. (b) N.A. (iii) 20.4.1955. (iv) (a) Ploughing and laddering by country plough. (b) Broadcast. (c) N.A. (d) and (e) -. (v) Nil. (vi) Rangadoria (early). Irrigated. (viii) 2 weedings. (ix) $67.49^{\prime \prime}$. (x) N.A.
2. TREATMENTS :

2 manurial doses : $\mathrm{M}_{0}=0$ and $\mathrm{M}_{1}=55 \mathrm{lb}$./ac. of Urea $+200 \mathrm{md} . / \mathrm{ac}$. of cowdung.
3. DESIGN :
(i) R.F.D.
(ii) (a) 2 .
(b) N.A.
(iii) 3.
(iv) (a) and (b)
(b) $66^{\prime} \times 31$
(v) No.
(vi) Yes.
4. GENERAL :
(i) Unsatisfactory
(ii) Affected by rice bug.
(iii) Grain yield. (iv)
(a) 1955-1956.
(b) Yes.
(c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $438.2 \mathrm{lb} . / \mathrm{ac}$. (ii) $89.4 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment difference is not significant. (iv) Av. yield of graio in lb./ac.

Treatment	\mathbf{M}_{0}	\mathbf{M}_{1}
Av. yield	$\mathbf{3 8 7 . 7}$	488.8
	S.E $/$ mean $=51.61 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Paddy (Ahu).
 Site :- Govt. Rice. Expt. Stn., Titabar.

Ref:-As. 56(9).
Type :- ' \mathbf{M} '.
Object:--To study the effect of manure on Paddy.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) $A h u$ paddy. (c) Nil. (ii) (a) Clay loam. (b) N.A. (iii) 10.5.1956. (iv) (a) Ploughing and laddering by country plough. (b) Broadcast. (c) N.A. (d) and (e) -. (v) Nil. (vi) Rangadoria (early). (vii) Irrigated. (viii) 2 weedings. (ix) $72.89^{\prime \prime}$. (x) N.A.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 55 (6) on page 19.
4. GENERAL :
(i) Unsatisfactory. (ii) Slightly affected by rice bug. (iii) Grain yield. (iv) (a) 1955-1956. (b) Yes. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.

5. RESULTS:

(i) $855.2 \mathrm{lb} . / \mathrm{ac}$. (ii) 179.3 lb ./ac. (iii) Treatment difference is not significant. (iv) Av. yield of grain in lb. $/ \mathrm{ac}$.

Treatment	T_{0}	$\mathrm{~T}_{1}$
Av. yield .	640.5	1070
	S.E./mean $=$	$103.5 \mathrm{lb} . / \mathrm{ac}$

```
Grop :- Paddy (Ahu).
Site :- Govt. Rice Expt. Stn., Titabar.
Ref :- As. 55(7).
Type:- 'M'.
```

Object :-To study the effect of manures on Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Ahu paddy. (c) Nil. (ii) (a) Clay loam. (b) N.A. (iii) 16.4.1955. iv) a) Ploughing and laddering by country plough. (b) Broadcast. (c) N.A. (d) and (e) -. (v) Nil. (vi) Rangadoria (ea:ly. 'vii) Irrigated. (viii) 2 weedings. (ix) $67.49^{\prime \prime}$. (x) N.A.
2. TREATMENTS :

3 manurial doses : $M_{0}=$ Control, $M_{1}=6 \mathrm{md} . / \mathrm{ac}$. of oilcake and $\mathrm{M}_{2}=200 \mathrm{md} . / \mathrm{ac}$. of cowdung.
3. DESIGN :
'i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 3. (iv) (a) $20^{\prime} \times 20^{\prime}$. (b) $20^{\prime} \times 20^{\prime}$. (v) No. (vi) Yes.
4. GENERAL :
(i) Unsatisfactory. (ii) Slightly affected by rice bug. (iii) Grain yield. (iv) (a) 1955-1956. (b) Yes. ' c ') Nil. (v) (a) and 'b' Nil. (vi; and (vii) Nil.
5. RESULTS :

Crop :- Paddy (Ahu).
Site :- Govt. Rice Expt. Stn., Titabar.

Ref :- As. 56(10).
Type :- ' \mathbf{M} ’.

Object :-To study the effect of manures on Paddy.

1. BASAL CONDITIONS :
(i) a Nil. (b) Ahu paddy. (c) Nil. (ii) (a) Clay loam. (b) N.A. (iii) 11.4.1956. (iv) (a) Ploughing and laddering by country plough. (b) Broadcast. (c) N.A. (d) and (e) -. (v) Nil. (vi) Rangadoria (early'. (vii Irrigated. (viii) 2 weedings. (ix) 72.89°. (x) N.A.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 55 (7) above.
4. GENERAL:
(i) Unsatisfactory. (ii) Slightly affected by rice bug. (iii) Grain yield. (iv) (a) 1955-1956. (b) Yes.
'c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $1282 \mathrm{lb} . / \mathrm{ac}$. (ii) $189.5 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av: yield of grain in lb ./ac.

Treatment	\mathbf{M}_{0}	\mathbf{M}_{1}	$\mathbf{M}_{\mathbf{2}}$
Av. yield	1070	1416	1361

S.E./mean $=109.5 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Sali).
Site :- Govt. Rice Expt. Stn., Titabar.

Ref :- As. 59(27).
Type :- ${ }^{6} \mathbf{M}$ '.

Object :-To study the effect of minor elements on Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Sali paddy. (c) Nil. (ii) (a) Clayloam. (b) N.A. (iii) 26.8 .1959 . (iv) (a) 8 ploughings followed by laddering. (b) Transplanting. (c) -. (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) $4 . \quad$ (v) $100 \mathrm{md} . / \mathrm{ac}$. of cowdung, $100 \mathrm{lb} . / \mathrm{ac}$. of A / S and 100 lb ./ac. of Super. (vi) S. 126 Laudumra (medium). (vii) Unirrigated. (viii) 1 weeding. (ix) $69.55^{\prime \prime}$. (x) 30.12 .1959 .
2. TREATMENTS :

All combinations of (1) and (2)+ a control.
(1) 3 trace elements : $S_{1}=$ Ferrous Sul. $S_{2}=$ Pot. Permanganate and $S_{3}=C / S$.
(2) 2 levels of trace elements: $\mathrm{M}_{1}=10$ and $\mathrm{M}_{2}=20 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
(i) R.B.D.
(ii) (a) 7 .
(b) $90^{\prime} \times 15^{\prime}$. (iii) 6 .
(iv) (a) and (b) $15^{\prime} \times 15^{\prime}$. (v) No
(vi) Yes.
4. GENERAL :
(i) Good.
(ii) Nil.
(iii) Grain yield.
(iv) (a) No.
(b) and
(c) Nil. : F (v)
(a) and
(b) N.A.
(vi) and
(vii) Nil.
5. RESULTS :
(i) $1996 \mathrm{lb} . / \mathrm{ac}$. (ii) $90 \mathrm{lb} . / \mathrm{ac}$. (iii) None of the effects is significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Control $=1944 \mathrm{lb} . / \mathrm{ac}$.

	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$
\mathbf{M}_{1} M_{2}	2002 2062 2025 1977 1996 1965	Mean Mean	1990
2030			
1979			

S.E. of S marginal mean	$=25.98 \mathrm{lb} . / \mathrm{ac}$.
S.E. of M marginal mean	$=21.21 \cdot \mathrm{lb} \cdot / \mathrm{ac}$.
S.E. of body of $S \times M$ table	$=36.74 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy (Sali).
Ref:- As. 59 (28).
Site :- Govt. Rice Expt. Stn., Titabar.
Type :- ' \mathbf{M} '.

Object :-To study the effect of different methods of application of A/S on Paddy.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Sali paddy. (c) Nil. (ii) (a) Clay loam. (b) N.A. (iii) Transplanting on 20.8.1959. (iv) (a) 8 ploughings followed by laddering. (b) Transplanting. (c) N.A. (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) 4 . (v) Nil. (vi' S. 126 Laudumra (medium;. , vi) Unirrigated. (viii) 1 weeding. (ix) 69.55". (x) 29.12.1959.

2. TREATMENTS :

1. Control.
2. $50 \mathrm{lb} . / \mathrm{ac}$. of A / S top-dressed, before 5 days of up-rooting the seedlings.
3. Dipping roots of seedlings for 5 minutes in $0.5 \% \mathrm{~A} / \mathrm{S}$ solution.
4. DESIGN:
(i) R.B.D.
(ii) (a) 3. (b) $58.5^{\prime} \times 15^{\prime}$. (iii) 6 .
(iv) (a) and (b) $15^{\prime} \times 9.75^{\prime}$. (v) Nil. (vi) Yes.
5. GENERAL :
(i) Gcod. (ii) Nil. (iii) Grain yield. (iv) (a) 1959-contd. (b) Yes. (c) Nil. (v) (a) Karimganj.
(b) N.A. (vi) and (vii) Nil.
6. RESULTS :
(i) $1573 \mathrm{lb} . / \mathrm{ac}$. (ii) 180 lb .'ac. (iii) Treatment differences are significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	1	2	3
Av. yield	1308	1567	1844
	S.E./mean	$=$	$73.48 \mathrm{lb} . / \mathrm{ac}$.

```
Grop :- Paddy (Kharif).
Site :- Expt. and Res. Stn., Upper Shillong.
```

Ref :- As. 54(11).
Type :- ' ${ }^{\prime}$ ’.

Object :-To study the effect of top dressing N on the yield of Paddy.

1. BASAL CONDITIONS :
i) a) to 'c) No. (ii) (a) Brown sandy loam. (b) N.A. (iii) 16.4.1954. (iv) (a) Pulverising. (b) Broadcasting. (c) $60 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) -. (v) $100 \mathrm{md} . / \mathrm{ac}$. of F.Y.M., $80 \mathrm{lb} . / \mathrm{ac}$. of A / S and $130 \mathrm{lb} . / \mathrm{ac}$. of B.M. broadcast at the time of sowing. (vi) Abor-red (medium). (vii) Unirrigated. (viii) 2 weedings. 'ix; 96.89". (x’ 28.10.1954.
2. TREATMENTS:
3. Control.
4. $20 \mathrm{lb} . / \mathrm{ac}$. of N as A / S.
5. $20 \mathrm{lb} . / \mathrm{ac}$. of N as C / N.

Manures top-dressed on 8.7.1954.
3. DESIGN :
(i R.B.D. (ii) (a) 3 . (b) $35^{\prime} \times 16 \frac{1}{\prime}^{\prime}$. (iii) 6 . (iv) (a) and (b) $11^{\prime} \times 16 \frac{1}{2}^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
i) Good. (ii) No. (iii) Grain and straw yield. (iv) (a) to (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 1403 lb ./ac. (ii) 191.3 lb ./ac. ,iii) Treatment differences are significant. (iv) Av. yield of grain in lb ./ac.

Treatment	1	2	3
Av. yield	1180	1480	1548
	S.E.',mean	$=$	$78.1 \mathrm{lb} . / \mathrm{ac}$.

```
Crop :- Paddy (Kharif).
Site :- Expt. Res. Stn., Upper Shillong
```

Ref :- As. 55(22).
Type :- 'M'.

Object :-To study the effect of combination of A/S and Super on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) No. (b) Paddy. (c) $100 \mathrm{md} . / \mathrm{ac}$. of F.Y.M, 150 lb ./ac. of B.M. and $100 \mathrm{lb} . / \mathrm{ac}$. of A/S. (ii) (a) Brown sandy loam. (b) N.A. (iii) 5.5.1955. (iv) (a) Pulverising. (b) Broadcasting. (c) $60 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) 一. (v) $100 \mathrm{md} . / \mathrm{ac}$. of F.Y.M. (vi) Lccal haildyngkot (medium). (vii) Unirrigated. (viii) 2 weedings. (ix) $99.59^{\prime \prime}$. (x) 10.11.1955.
2. TREATMENTS :

All combinations of (1) and (2) + a control.
(1) 3 levels of $A / S: N_{1}=100, N_{2}=200$ and $N_{3}=300 \mathrm{lb}$./ac.
(2) 3 levels of Super: $\mathrm{P}_{1}=125, \mathrm{P}_{2}=250$ and $\mathrm{P}_{3}=375 \mathrm{lb}$./ac.
3. IDESIGN :
(i) R.B.D.
(ii) (a) 10 .
(b) $16 \frac{1}{2}^{\prime} \times 110 \frac{1}{2}^{\prime}$
(iii) 4. (iv) (a) and (b) $16 \frac{1}{2}^{\prime} \times 8$. .
(v) No. (vi) Yes.
4. GENERAL :
(i) Good. (ii) No. (iii) Grain Yield. (iv) '(a) 1955-N.A. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) 350.5 lb ./ac. (ii) $165.6 \mathrm{lb} . / \mathrm{ac}$. (iii) None of the effects is significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

$$
\text { Control }=275 \mathrm{lb} \cdot / \mathrm{ac}
$$

	P_{1}	P_{2}	P_{3}	Mean
N_{1}	410	320	300	343
N_{2}	350	435	390	392
N_{3}	360	345	320	342
Mean	373	367	337	359

S.E. of any marginal mean	$=47.8 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table	$=82.8 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Site :- Expt. Res. Stn., Upper Shillong.
> Ref :- As. $55(21)$. > Type :- ${ }^{〔} \mathbf{M} ’$.

Object:-To study the effect of different forms of N and P on the yield of Paddy.

1. BAISAL CONDITIONS :
(i) (a) No. (b) Paddy. (c) $100 \mathrm{md} . / \mathrm{ac}$. of F.Y.M., $150 \mathrm{lb} . / \mathrm{ac}$. of B.M. and $100 \mathrm{lb} . / \mathrm{ac}$. of A / S. (i) (a) Brown sandy loam. (b) N.A. (iii) 29.4.1955. (iv) (a) Pulverising. (b) Broadcasting. (c) $60 \mathrm{lb} / \mathrm{ac}$. (d) and (e) -. (v) $100 \mathrm{md} . / \mathrm{ac}$. of F.Y.M. (vi) Khonorullo (medium). (vii) Unirrigated. (viii) 2 weedings. (ix) $99.59^{\prime \prime} . \quad$ (x) 7.11.1955.

2. TREATMENTS :

1. Control.
2. $200 \mathrm{lb} . / \mathrm{ac}$. of B.M. $+154 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{A} / \mathrm{S} / \mathrm{N}$.
3. 200 lb ./ac. of B.M.
4. $200 \mathrm{lb} . / \mathrm{ac}$. of B.M. $+91 \mathrm{lb} . / \mathrm{ac}$. of Urea.
5. 250 lb ./ac. of Super.
6. $250 \mathrm{lb} . / \mathrm{ac}$. of Super +200 lb ./ac. of A / S.
7. $200 \mathrm{lb} . / \mathrm{ac}$. of A / S.
8. $250 \mathrm{lb} . / \mathrm{ac}$. of Super $+154 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{A} / \mathrm{S} / \mathrm{N}$.
9. 154 lb ./ac. of $\mathrm{A} / \mathrm{S} / \mathrm{N}$.
10. 250 lb ./ac. of Super $+91 \mathrm{lb} . / \mathrm{ac}$. of Urea.
11. $91 \mathrm{lb} / \mathrm{ac}$ of Urea.
12. 200 lb ./ac. of mixed fertilizer.
13. $100 \mathrm{lb} . / \mathrm{ac}$. of B. $\mathrm{M} .+100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{A} / \mathrm{S} / \mathrm{N}$.

3. DESIGN

(i) R.B.D.
(ii) (a) 13.
(b) N.A.
(iii) 4. (iv) (a) and (b) $16 \frac{1}{2}^{\prime} \times 8 \frac{3^{\prime}}{}$.
(v) N!l. (vi) Yes.

4. GENERAL :

(i) Good. (ii) No. (iii) Grain yield. (iv) (a) No. (b) and (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil

5. RESULTS :

(i) $390.4 \mathrm{lb} . / \mathrm{ac}$. (ii) 148.3 lb ./ac. (iii) Treatment differences are significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$

Treatment	1	2	3	4	5	6	7	8	9	10	11	12	13
Av. yield	345	280	245	445	375	410	560	520	430	275	455	315	420

S.E./mean $=74.15 \mathrm{lb} . / \mathrm{ac}$.
Crop :- Paddy (Kharif).
Site :- Expt. Res. Stn., Upper Shillong.

Ref :- As. 57(34).
 Type :- ' \mathbf{M} '.

Object :-To study the effect of different forms of N and P on the yield of Paddy.

1. BASAL CONDITIONS :
(i) 'a', Nil. (b) Fallow. (c', Nil. (ii: 'a', Dark brown sandy loam. (b) N.A. (iii) 25.4.1957. (iv) (a) Pulverising. (b) Broadcast. (c) $60 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) - (v) $100 \mathrm{md} . / \mathrm{ac}$. of F.Y.M. (vi) Khonorullo (medium) (vii) Unirrigated. (viii) 2 weedings. (ix) 63.82". (x) 3.11.1957.
2. TREATMENTS :
3. Control.
4. 200 lb ./ac. of B.M. +200 lb . ac. of A/S.
5. $200 \mathrm{lb} . / \mathrm{ac}$. of B.M.
6. $200 \mathrm{lb} . / \mathrm{ac}$. of B.M. $+91 \mathrm{lb} . / \mathrm{ac}$. of Urea.
7. 250 lb /ac. of Super.
8. 250 lb ./ac. of Super +200 lb . $/ \mathrm{ac}$. of $\mathrm{A}_{/} \mathrm{S}$.
9. $200 \mathrm{lb} . / \mathrm{ac}$. of A / S.
10. $250 \mathrm{lb} . / \mathrm{ac}$. of Super $+91 \mathrm{lb} . / \mathrm{ac}$. of Urea.
11. $9 \mathrm{l} \mathrm{lb} . / \mathrm{ac}$. of Urea.
12. $200 \mathrm{lb} . / \mathrm{ac}$. of mixed fertilizer.
13. DESIGN:
(i) R.B.D. (ii) (a) 10 . (b) $16 \frac{1^{\prime}}{} \times 110 \frac{1^{\prime}}{\prime^{\prime}}$ (iii) 4 . (iv) (a) and (b) $16 \frac{1_{2}^{\prime}}{} \times 8 \frac{3^{\prime}}{3^{\prime}}$. (v) No. (vi) Yes.
14. GENERAL :
(i) Good. (ii) No. (iii) Grain yield. (iv) (a) N.A. (b) and (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
15. RESULTS:
(i) 302.7 lb ./ac. (ii) 147.8 lb ./ac. (iii) Treatment differences are not significant. (iv) Ay. yield of grain in lb. ac.

Treatment	1	2	3	4	5	6	7	8	9	10
Av. yield	$221 \cdot 6$	$353 \cdot 6$	$287 \cdot 6$	$325 \cdot 3$	$377 \cdot 1$	$273 \cdot 4$	$315 \cdot 9$	$259 \cdot 3$	$330 \cdot 0$	$282 \cdot 9$

S.E. $/$ mean $=73.9 \mathrm{lb} . / \mathrm{ac}$.

```
Crop :- Paddy(Kharif).
Site :- Expt. Res. Stn., Upper Shillong.
Ref:- As. 59(11).
Type :- `M'.
```

Object :-To study the effect of different forms of N and P on the yield of Paddy.

1. BASAL CONDITIONS:
(i. a Nil b) Paddy. (c) $200 \mathrm{md} . / \mathrm{ac}$. of F.Y.M., $150 \mathrm{lb} . / \mathrm{ac}$. of B.M. and $100 \mathrm{lb} . / \mathrm{ac}$. of A/S. (ii) a Dark brown sandy loam. (b) N.A. (iii) 28.3.1959/27.5.1959. (iv) (a) Pulverising. (b) Transplanting. c $60 \mathrm{lb} . / \mathrm{ac}$. $\mathrm{d}^{\prime}, 9^{\prime \prime} \times 6^{\prime \prime}$. (e) 3 . (v) 100 md /ac. of F.Y.M. at the time of hoeing. (vi) Khonorullo (medium. (vii) Unirrigated. (viii) 2 weedings. (ix) $55.68^{\prime \prime}$ (x) 29.10.1957.

2. TREATMENTS

1. Control.
2. $200 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{A} / \mathrm{S}+125 \mathrm{lb} . / \mathrm{ac}$ of Super.
3. 200 lb . ac . of A / S.
4. $300 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{A} / \mathrm{S}+187.5 \mathrm{lb} . / \mathrm{ac}$ of Super.
5. $300 \mathrm{lb} . / \mathrm{ac}$. of A / S.
6. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{A} / \mathrm{S}+100 \mathrm{lb} . / \mathrm{ac}$. of B.M.
$4100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{A} / \mathrm{S}+62.5 \mathrm{lb} . / \mathrm{ac}$. of Super.
7. $200 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{A} / \mathrm{S}+100 \mathrm{lb}$./ac. of B.M.
8. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{A} / \mathrm{S}+100 \mathrm{lb}$./ac. of Super.
9. DESIGN :
(i) R.B.D.
(ii) (a) 10 .
(b) N.A.
(iii) 4. (iv) (a) and
(b) $16 \frac{1}{2} \times 8 \frac{1}{4}$.
(v) No. (vi) Yes
10. GENERAL :
(i) Good. (ii) No. (iii) Grain yield. (iv) (a) $1959-$ N.A. (b) and (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
11. RESULTS :
(i) $1140 \mathrm{lb} . / \mathrm{ac}$. (ii) $276 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	1	2	3	4	5	6	7	8	9	10
Av. yield.	1360	1080	840	1000	1240	1160	1080	1440	1000	1240
	S.E./mean	$=$	$188 \mathrm{lb} . / \mathrm{ac}$.							

Grop :- Paddy (Kharif).
Site :- Expt. Res. Stn., Upper Shillong.

Ref :- As. 59(12)
Type :- 'M'

Object:-To study the effect of combination of Urea and Super on the yield of Paddy.

1. BASAL CONDITIONS
(i) (a) Nil. (b) Fallow. (c) No. (ii) (a) Red sandy loam. (b) N.A. (iii) 4.4.1959. (iv) (a) Pulverising. (b) Broadcasting. (c) $60 \mathrm{Ib} . / \mathrm{ac}$. (d) and (c) -. (v) $150 \mathrm{md} . / \mathrm{ac}$. of F.Y.M. (vi) Abor-red (medium). (vii) Unirrigated. (viii) 2 weedings. (ix) $55.68^{\prime \prime}$. (x) 27.10.1959.
2. TREATMENTS:

5 manurial treatments +2 controls : $\mathrm{M}_{1}=46 \mathrm{lb} . / \mathrm{ac}$. of Urea, $\mathrm{M}_{2}=46 \mathrm{lb} . / \mathrm{ac}$. of Urea $+62.5 \mathrm{lb} . / \mathrm{ac}$. of Super, $\mathrm{M}_{3}=2 \mathrm{M}_{1}, \mathrm{M}_{4}=2 \mathrm{M}_{2} ; \mathrm{M}_{5}=3 \mathrm{M}_{1}$ and $\mathrm{M}_{6}=3 \mathrm{M}_{2}$.
3. DESIGN:
(i) R.B.D.
(ii) (a) 8 .
(b) N.A.
(iii) 4. (iv)
(a) $16 \frac{1}{2} \times 8 \frac{1}{4}$.
(b) $16 \frac{1}{2} \times 8 \frac{1}{4}$.
(v) No. (vi) Yes.
4. GENERAL :
(i) Poor. (ii) Pest attack. Gammexane sprayed twice. (iii) Grain yield. (iv) (a) N.A. (b) and (c) No.
(v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS
(i) $98.4 \mathrm{lb} . / \mathrm{ac}$. (ii) $29.3 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb./ac.

$$
\text { Control }=111.2 \mathrm{lb} . / \mathrm{ac} .
$$

Treatment	M_{1}	M_{2}	M_{3}	M_{4}	M	M_{6}
Av. yield	82.5	85.0	87.5	127.5	92.	90.0
	S.E./mean (other than control). S.E./control mean			,		

```
Crop :- Paddy (Kharif).
Site :- M.A.E. Farm, Tinsukia.
```

```
Ref:- As. (MAE).
```

Ref:- As. (MAE).
Type :- 'M'.

```
Type :- 'M'.
```

Object :-To study the effect of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to legume crop and of N to the succeding Paddy crop.

1. BASAL CONDITIONS :
i) (a) N.A. (b) and ' c ', As per treatments. (ii) (a) Brahmaputra alluvium. (b) N.A. (iii) Ist to 4th of August. (iv) (a, 8 ploughings. .b; Transplarting. (c) N.A. 'd) $8^{\prime \prime} \times 8^{\prime \prime}$. (e) N.A. (v) Nil. (vi, N.A. , vii) Unirrigated. (viii, 5 weedings and 1 hozing. (ix' N.A. is First and second week of Dec.
2. TREATMENTS:

Main-plot treatments :
All combinations of $\left(1\right.$, and $\left(2,+\right.$ Fallow plot $\left\{\mathrm{L}_{3} \mathbf{P}_{\mathbf{0}}\right)$.
(1) 2 legumes: $\mathrm{L}_{1}=$ Matikaiai and $\mathrm{L}_{2}=\mathrm{Pea}$.
(9: 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to legume crops: $\mathrm{P}_{0}=0, \mathrm{P}_{1}=40$ and $\mathrm{P}_{2}=80 \mathrm{lb}$./ac.
Sub-plot treatments :
3 levels of N as A, S applied to paddy $\operatorname{crop}: \mathrm{N}_{3}=0, \mathrm{~N}_{1}=15$ and $\mathrm{N}_{2}=30 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
(i) Split-plot. (ii) (a) 7 main-plots'blozk ; 3 sub-plots/mzin-plot. 'b) N.A. (iii) 3. (iv', 'a) N.A. (b) $1 / 100 \mathrm{ac}$. (v, N.A. (vi) Yes.
4. GENERAL :
(i) Poor. (ii) No. (iii, Grain yield. (iv; (a) 1957-contd. (b; No. (c) N.A. (v) (a) and (b) N.A. (vi) and vii ${ }^{\text {Nil. }}$
5. RESULTS :
i) 436.5 lb /ac. in: 'a'; 143.0 lb . ac. (b) $95.4 \mathrm{lb} . / \mathrm{ac}$. (iii; Control vs others effect and N effect are highly significant while all other effects are not significant. iv) Av. yield of grain in lb ./ac.

	$\mathrm{L}_{0} \mathrm{P}_{0}$	$\mathrm{~L}_{1} \mathrm{P}_{0}$	$\mathrm{~L}_{2} \mathrm{P}_{0}$	$\mathrm{~L}_{1} \mathrm{P}_{1}$	$\mathrm{~L}_{2} \mathrm{P}_{1}$	$\mathrm{~L}_{1} \mathrm{P}_{2}$	$\mathrm{~L}_{2} \mathrm{P}_{2}$	Mean
N_{0}	233.7	333.3	383.5	450.1	399.9	383.5	483.0	381.0
$\mathrm{~N}_{1}$	416.4	4336	433.6	549.7	516.7	533.2	500.3	483.4
$\mathrm{~N}_{2}$	333.3	433.6	433.6	483.0	416.4	533.2	483.0	445.2
Mean	327.8	400.2	416.9	494.3	444.3	483.3	488.8	436.5

S.E. of difference of two.

1. LP marginal means	$=66.0 \mathrm{lb} . / \mathrm{ac}$.
2. N marginal means	$=29.4 \mathrm{lb} . / \mathrm{ac}$.
3. N means at the same level of LP	$=77.9 \mathrm{lb} . / \mathrm{ac}$.
4. LP means at the same level of N	$=91.7 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
 Site :- M.A.E. Farm, Tinsukia.

Ref:- As. 59(MAE).
 Type :- ' \mathbf{M} '.

Object :-Type IV-To study the effect of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to legume crop and of N to the succeeding Paddy crop.

1. BASAL CONDITIONS and 2. TREATMENTS :

Same as in expt. no. 58 (MAE) Type IV on page. 25 conducted at Tinsukia.
3. DESIGN :
(i) Split-plot. (ii) (a! 7 main-plots/block; 3 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) N.A. b) $31^{\prime} \times 14.5^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL:
(i) Normal. (ii), N.A. , iii, Grain yield. (iv) (a) 1957-contd. (b; No. 'c) N.A. (v) Nil. (vi) and (vii) Nil.
5. RESCLTS:
(i) 1746 lb /ac. (ii) a) $137.9 \mathrm{lb} . / \mathrm{ac}$. (b) 124.3 lb ./ac. (iii) Control $v s$ others is significant. N effect is highly significant. Other effects are not significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	$\mathrm{L}_{0} \mathrm{P}_{0}$	$\mathrm{~L}_{1} \mathrm{P}_{0}$	$\mathrm{~L}_{2} \mathrm{P}_{0}$	$\mathrm{~L}_{1} \mathrm{P}_{1}$	$\mathrm{~L}_{2} \mathrm{P}_{1}$	$\mathrm{~L}_{1} \mathrm{P}_{2}$	$\mathrm{~L}_{2} \mathrm{P}_{2}$	Mean
N_{0}	1407	1061	1160	1160	1654	1407	2032	1412
$\mathrm{~N}_{1}$	1596	1753	1506	1991	1901	1646	1893	1755
$\mathrm{~N}_{2}$	1942	1761	2370	1991	1884	1893	2666	2072
Mean	1648	1525	1679	1714	1813	1649	2197	1746

S.E. of difference of two

1. LP marginal means
$=65.0 \mathrm{lb} . / \mathrm{ac}$.
2. N marginal means
$=38.4 \mathrm{lb} . / \mathrm{ac}$.
3. N means at the same level of LP
$=101.5 \mathrm{lb} . / \mathrm{ac}$.
4. LP means at the same level of $\mathrm{N} \quad=105.3 \mathrm{lb} \cdot / \mathrm{ac}$.
Crop:- 'Padidy (Kharif).
Site :- M.A.E. Farm, Tinsukia.

Ref :- As. 57(MAE).
 Type :- ' \mathbf{M}^{\prime}.

Object:-Type V-To study the most suitable time for the application of N .

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Fallow. (c) N.A. (ii) Brahmaputra alluvium. (iii) End of July 1957. (iv) (a) 7 ploughings. (b) Transplanting. (c) N.A. (d) $8^{\prime \prime} \times 8^{\prime \prime}$. (c) N.A. (v) $20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super. (vi) N.A. (vii) Unirrigated. (viii) 2 hoeings and 5 weedings. (ix) N.A. (x) First week of January 1958.

2. TREATMENTS :

All combinations of (1) and (2) +a control (no manure).
(1) 2 sources of $30 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}: \mathrm{S}_{1}=$ Urea and $\mathrm{S}_{2}=\mathrm{A} / \mathrm{S}$.
(2) 7 times of application of $\mathrm{N}: \mathrm{T}_{1}=$ before planting, $\mathrm{T}_{2}=$ at planting, $\mathrm{T}_{3}=$ at tillering, $\mathrm{T}_{4}=\frac{1}{2}$ before planting $+\frac{1}{2}$ at tillering, $\mathrm{T}_{5}=\frac{1}{2}$ at planting $+\frac{1}{2}$ at tillering, $\mathrm{T}_{6}=$ $\frac{1}{3}$ before planting $+\frac{1}{3}$ at tillering $+\frac{1}{3}$ one week before flowering and $\mathrm{T}_{7}=\frac{1}{3}$ at planting $+\frac{1}{3}$ at tillering $+\frac{1}{3}$ one week before flowering.
3. DESIGN :
(i) R.B.D.
(ii) (a) 15 .
(b) N.A.
(iii) 3.
(iv) (a) N.A. (b)
(b) $1 / 100 \mathrm{ac}$.
(v) N.A. (vi) Yes.
4. GENERAL :
(i) Below normal.
(ii) No.
(iii) Grain yield.
(iv) 1957-contd.
(b) No. (c) N.A.
(v) to (vii) Nil.
5. RESULTS :
(i) $533.5 \mathrm{lb} / / \mathrm{ac}$. (ii) 133.15 lb ./ac. (iii) S effect and control $v s$ others are highly significant. (iv) Av. yield of grain in lb./ac.

Control mean $=317.9 \mathrm{lb} / \mathrm{ac}$.

	T1	T_{2}.	T_{3}	T ${ }_{4}$	T_{5}	T6	T_{7}	Mean
S_{1}	551.3	452.6	518.4	452.6	436.1	501.9	419.7	476.1
S_{2}	633.6	650.0	584.2	732.3	534.9	666.5	551.3	621.8
Mean	592.4	551.3	551.3	592.4	485.5	584.2	485.5	548.9

S.E. of S marginal mean	$=29.06 \mathrm{lb} . / \mathrm{ac}$.
S.E. of T marginal mean	$=54.36 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table or control mean	$=76.88 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Site :- M.A.E. Farm, Tinsukia.

Ref :- As. 58(MAE).
Type :- ' ${ }^{\mathbf{M}}$ '.

Object :--Type V-To study the most suitable time for the application of N .

1. BASAL CONDITIONS :
ii. 'a) to 'c: N.A. 〈ii; (a) Brahmaputra alluvium. (b) N.A. (iii) 1 to 4.8 .1958 . (iv) 'a) 8 ploughings. (b) Transplanting. c' N.A. 'd; $8^{\prime \prime} \times 8^{\prime \prime}$. (e) N.A. (v) $20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super. (vi', N.A. (vii) Unirrigated. (viii) 5 weedings and 1 hoeing. (ix; N.A. (x; First and second week of December.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 57. MAE Type V on page 27.
5. RESLLTS :
(i) 794.5 lb ./ac. 'ii) 97.5 lb .'ac. .iii) S and control is others effects are highly significant. Other effects are not significant. iv: Av. yield of grain in 10 ., ac .

Control $=633.3 \mathrm{lb} .{ }^{\prime} \mathrm{ac}$.

Crop :- Paddy (Kharif)	Ref :- As. 59(MAE).
Site :- M.A.E. Farm, Tinsukia.	Type :- 'M'.

Object : - Type V -To study the most suitable time for the application of N .

1. BASAL CONDITIONS:
i) (a; to (c) N.A. (ii), a) Brahmaputra alluvium (b) N.A. iii, July-August 1959. (iv) (a) 4 to 6 ploughings. 'b, Transplanting. (c) N.A. (d) $8^{\prime \prime} \times 8^{\prime \prime}$. (c) N.A. (v) 20 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super. (vi) N.A. (vii, Unirrigated. viii; Weeding and hoeing. (ix; N.A. (x) Dec. 1959.
2. TREATMENTS :

Same as in expt. in 57;MAE', Type V on page 27.
3. DESIGN :
i) R.B.D. (ii) 'a) 15 . (b; N.A. (iii) 3. (iv) (a) $33^{\prime} \times 16.5^{\prime}$. (b) $31^{\prime} \times 14.5^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.
4. GENERAL:
(i) Poor. (ii) N.A. (iii) Grain yield. (iv) (a) 1957 -contd. (b) and (c) N.A. (v) Nil. (vi) and (vii) Nil.
5. RESULTS :
i) 631.2 lb /ac. (ii) 184.3 lb ./ac. (iii) Only S effect is highly significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Control mean $=469.0 \mathrm{lb} . / \mathrm{ac}$.

S.E. of S marginal mean
$=40.2 \mathrm{lb} . / \mathrm{ac}$.
S.E. of T marginal mean
$=75.2 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table or control mean
$=106.4 \mathrm{lb} . / \mathrm{ac}$.

Ref :- As. 57(MAE).

 Type :- ' \mathbf{M}^{\prime}.Object:-Type VI-To determine the method of placement of fertilizers.

BASAL CONDITIONS :

(i) (a) to (c) N.A. (ii) (a) Brahmaputra alluvium. (b) N.A. (iii) From first week to 4 th week of August, 1957. (iv) (a) 7 ploughings. (b) Transplanting. (c) N.A. (d) $8^{\prime \prime} \times 8^{\prime \prime}$. (e) N.A. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) 2 hoeings, weeding after transplanting. (ix) N.A. (x) 4 th week of Dec. 1957.

2. TREATMENTS

All combinations of (1), (2) and (3) +1 control (no manure)/block.
(1) 2 doses of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{1}=20$ and $\mathrm{P}_{2}=40 \mathrm{lb}$./ac.
(2) 3 sources of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{S}_{1}=$ Super, $\mathrm{S}_{2}=$ Dical. Phos. and $\mathrm{S}_{3}=$ Ammo. Phos.
(3) 3 methods of application of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{M}_{1}=$ Broadcasting at puddling time, $\mathrm{M}_{2}=$ Dipping the seedlings in mud slush mixed with the fertilizer before transplanting and $\mathbf{M}_{3}=$ Application of fertilizers in pellets near the roots at the time of planting.
N made up to 30 lb ./ac. by applying A / S at planting.
3. DESIGN :
(i) $3^{2} \times 2+3$ confd. Fact. (ii) (a) 7 plots/block; 3 blocks/replication. (b) N.A. (iii) 4. (iv) (a) N.A. (b) 1/100 ac. (v) N.A. (vi) Yes.
4. GENERAL:
(i) Poor. (ii) No. (iii) Grain yield. (iv) (a) 1957- contd. (b) No. (c) N.A. (v) Nil. (vi) Nil. (vii) Experiment conducted in the year 1959 was rejected as the crop in a number of plots was grazed by cattle.
5. RESULTS :
(i) $689 \mathrm{lb} . / \mathrm{ac}$. (ii) $175.9 \mathrm{lb} . / \mathrm{ac}$. (iii) Control vs others is highly significant. Interaction $\mathrm{S} \times \mathrm{P}$ is significant. Other effects are not significant. (iv) Av. yield of grain in lb ./ac.

Control $=508 \mathrm{lb} . / \mathrm{ac}$.

	M_{1}	M_{2}	M_{3}	Mean	P_{1}	P_{2}
S_{1}	680	775	715	$\cdot 723$	803	643
S_{2}	685	650	730	688	630	747
S_{3}	750	695	790	745	767	723
Mean	705	707	745	719	733	705
P_{1}	703	747	750			
P_{2}	707	667	740			

S.E. of S or M marginal mean	$=35.9 \mathrm{lb} . / \mathrm{ac}$.
S.E. of P marginal mean	$=29.3 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of $S \times P$ or $M \times P$ table	$=50.4 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of $S \times M$ table	$=62.2 \mathrm{~b} . / \mathrm{ac}$.

```
Crop Paddy (Khanf). Ref:- Or. 58(MAE).
Site :- M.A.E. Farm, Tinsukia.
Type :- 'M'.
```

Object :-Type VI-To determine the method of placement of fertilizers.

1. BASAL CONDITIONS :
(i) (a) to 'c) N.A. (ii, (a) Brahmaputra alluvium. (b) N.A. (iii) 1 to 4.8 .1958 . iv) (a) 8 ploughings. (b) planting. (c) N.A. (d) $8^{*} \times 8^{*}$. (e) N.A. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) 5 weedings and 1 harrowing. ix) N.A. (x; First and second week of Dec.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 57 ;MAE) Type VI on page 29.
5. RESULTS:
11. $577.9 \mathrm{lb} . / \mathrm{ac}$. ii ; 100.5 lb ./ac. (iii’ Control vs manures and S effects are highly significant. (iv) Av. yjeld of grain in $1 \mathrm{~b} ., \mathrm{ac}$.

$$
\text { Control mean }=303.6 \mathrm{lb} / \mathrm{ac}
$$

	M_{1}	M_{2}	M_{3}	Mean	P_{1}	P_{2}
S_{1}	506.2	550.0	493.7	516.6	537.5	495.8
S_{2}	637.5	675.0	625.0	645.8	608.3	683.3
S_{3}	712.5	700.0	712.5	718.3	687.5	729.2
Mean	618.7	641.7	610.4	623.6	611.1	636.1
P_{1}	604.2	645.8	583.3			
P_{2}	633.3	637.5	637.5			

S.E. of S or M marginal mean	$=20.5 \mathrm{lb} . / \mathrm{ac}$.
S.E. of \mathbf{P} marginal mean	$=16.8 \mathrm{lb} / \mathrm{ac}$.
S.E. of body of $S \times P$ or $M \times P$ table	$=29.0 \mathrm{lb} / / \mathrm{ac}$.
S.E. of body of $S \times M$ table	$=35.5 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Ist crop).	Ref :- Or. 54(TCM).
Centre :- Darrang (c.f.).	Type :- ‘M'.

Object:-Type II (a) - To study the effect of different levels and sources of N along with $\mathrm{P}_{2} \mathrm{O}_{5}$ on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) to (c) N A. (ii) Alluvial (loam), pH 5.5. (iii) Nil. (iv) N.A. (v) (a) N.A. (b) Transplanted. (c)-. (d' and (e) N.A. (vi) June-July. (vii) Unirrigated. (viii) and (ix) N.A. (x) Nov.-Dec.
2. TREATMENTS :
$0-$ Control.
$\mathrm{N}_{1} \quad-20 \mathrm{lb}$./ac. of N as $\mathrm{A}^{\prime} \mathrm{S}$.
$\mathrm{P}_{1} N_{1}=20 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+20 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
$\mathrm{P}_{1} \mathrm{~N}_{1}{ }^{\prime}=20 \mathrm{lb}$. $/ \mathrm{ac}$. of N as Urea $+20 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
,i) and (ii) Eleven community project centres, representing the entire paddy growing tract were selected. From each community project centre, one development block was selected. Villages were selected at random from the selected block and a list of cuitivators growing paddy for each selected village was prepared. From this list, two cultivators were selected at random and one field each belonging to them was taken for trial. In each selected field one unreplicated trial was laid out. (iii) N.A. (iv) Yes.
4. GENERAL :
(i) Normal. (ii) No. (iii) Grain yield. (iv) (a) 1953-1955. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :

Treatment	0	N_{1}	$P_{1} N_{1}$	$P_{1} N_{1}^{\prime}$	
Av. yield	2123	2839	3538	2872	
	G.M. $=2843 \mathrm{lb} . / \mathrm{ac}$.	S.E. $/$ mean $=65.83 \mathrm{lb} . / \mathrm{ac}$. and no. of trials $=31$.			

```
Crop :- Paddy (1st crop).
Ref :- Or. 54 (TCM).
Centre :- Darrang (c.f.).
Type :- ' \(\mathbf{M}\) '.
```

Object :-Type II (b)-To study the effect of different levels and sources of N along with $\mathrm{P}_{2} \mathrm{O}_{5}$ on the yield of Paddy.

1. BASAL CONDITIONS :

Same as in expt. no. 54 (TCM) Type II (a) on page 30 conducted at Darrang.
2. TREATMENTS :
$0=$ Control
$\mathrm{P}_{1}=20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
$\mathrm{P}_{1} \mathrm{~N}_{1}=20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super +20 lb ./ac. of N as A / S.
$\mathrm{P}_{1} \mathrm{~N}_{2}=20 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super $+40 \mathrm{lb} . / \mathrm{ac}$. of N as A / S.
$\mathrm{P}_{1} \mathrm{~N}_{1}^{\prime}=20 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super $+20 \mathrm{lb} . / \mathrm{ac}$. of N as Urea.
$\mathrm{P}_{1} \mathrm{~N}_{2}{ }^{\prime}=20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super +40 lb ./ac. of N as Urea.
3. DESIGN and 4. GENERAL :

Same as in expt. no. 54 (TCM) Type II (a) on page 30 conducted at Darrang.
5. RESULTS

Treatment	0	P_{1}	$P_{1} N_{1}$	$P_{1} N_{2}$	$P_{1} N_{1}{ }^{\prime}$	$P_{1} N_{2}{ }^{\prime}$

Av. yield	2197	3431	3563	2715	2880	2617

G.M. $=2900 \mathrm{lb} . / \mathrm{ac} . ;$ S.E. $=74.1 \mathrm{lb} . / \mathrm{ac}$. and no. of trials $=30$.

```
Crop :- Paddy (1st crop).
Centre :- Darrang (c.f.).
Ref :- As. 54(TCM). Type :- ' \(\mathbf{M}\) '.
```

Object:-Type III-To study the effect of different levels and sources of $\mathrm{P}_{2} \mathrm{O}_{5}$ along with N on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) to (e) N.A. (ii) Alluvial (undifferentiated) loam, pH 5.5. (iii) Nil. (iv) N.A. (v) (a) N.A. (b) Transplanted. (e) - (d) and (e) N.A. (vi) June-July. (vii) Unirrigated. (viii) and (ix) N.A. (x) Nov.-Dec.
2. TREATMENTS :
$0=$ Control (no manure)
$\mathrm{N}_{\mathrm{t}}=20 \mathrm{lb} . / \mathrm{ac}$. of N as A / S.
$\mathrm{N}_{1} \mathrm{P}_{1}=20 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+20 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
$\mathrm{N}_{1} \mathrm{P}_{2}=20 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
$\mathrm{N}_{1} \mathrm{P}_{2}^{\prime}=20 \mathrm{lb}$./ac. of N as $\mathrm{A} / \mathrm{S}+20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
$\mathrm{N}_{1} \mathrm{P}_{\mathbf{2}}{ }^{\prime}=20 \mathrm{lb}$./ac. of N as $\mathrm{A} / \mathrm{S}+40 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
Fertilizers applied two days before planting.
DESIGN and 4. GENERAL:
Same as in expt. no. 54 (TCM) Type $\mathrm{II}(\mathrm{a})$ on page 30 conducted at Darrang.
3. RESULTS:

Treatment	0	$\mathrm{~N}_{1}$	$\mathrm{~N}_{1} \mathrm{P}_{1}$	$\mathrm{~N}_{1} \mathrm{P}_{\mathbf{2}}$	$\mathrm{N}_{1} \mathrm{P}_{1}{ }^{\prime}$	$\mathrm{N}_{1} \mathrm{P}_{2}{ }^{\prime}$
Av. yield	2172	2938	3612	2246	2732	$\mathbf{3 2 8 3}$

$$
\text { G.M. }=2831 \mathrm{lb} . / \mathrm{ac} . ; \text { S.E. }=65.83 \mathrm{lb} . / \mathrm{ac} . \text { and no. of trials }=29 .
$$

Crop :- Paddy (1st crop).	Ref:- As. $55($ TCM $)$.
Centre :- Udaygiri (c.f).	Type :- ' \mathbf{M}^{\prime}.

Object:-Type I-To study the effect of different levels and sources of N on the yield of Paddy.

1. BASAL CONDITIONS :

Same as in expt. no. 54 (TCM) Type II(a) on page 30 conducted at Darrang.
2. TREATMENTS:

0 = Control (no manure).
$\mathrm{N}_{1}=20 \mathrm{lb}$. ac . of N as $\mathrm{A}_{i} \mathrm{~S}$.
$\mathrm{N}_{2}=40 \mathrm{lb} / \mathrm{ac}$. of N as A.S.
$\mathrm{N}_{1}{ }^{\prime}=20 \mathrm{lb}$./ac. of N as U'ea.
$\mathrm{N}_{2^{\prime}}=40 \mathrm{lb} . / \mathrm{ac}$. of N as Urea.
Fertilizers broadcast two days before planting.
3. DESIGN and 4. GENERAL:

Same as in expt. no. 54, TCM) Type II(a) on page 30 conducted at Darrang.
5. RESULTS :

Treatment	0	$\mathrm{~N}_{1}$	$\mathrm{~N}_{2}$	$\mathrm{~N}_{1}{ }^{\prime}$	$\mathrm{N}_{2}{ }^{\prime}$
Av. yield	1670	2083	2081	2295	2204

G.M. $=2067 \mathrm{lb} . / \mathrm{ac} . ;$ S.E. $=103.7 \mathrm{lb} . / \mathrm{ac}$. and no. of trials $=14^{\circ}$.

Crop :- Paddy (lst crop).	Ref :- As. 55(TCM).
Centre :- Udaygiri. (c.f).	Type :- 'M'.

Object:-Type II'b;-To study the effect of different levels and sources of N along with $\mathrm{P}_{2} \mathrm{O}_{5}$ on the yield of Paddy.

1. BASAL CONDITIONS to 4. GENERAL:

Same as in expt. no. 54 TCM) Type II (b) on page 31 conducted at Darrang.
5. RESULTS:

Treatment	0	P_{1}	$P_{1} N_{1}$	$P_{1} N_{2}$	$P_{1} N_{1}{ }^{\prime}$	$\mathbf{P}_{1} \mathbf{N}_{2}{ }^{\prime}$
Av. yield	1892	2291	2544	2410	2247	2250

G.M. $=2272 \mathrm{lb} . / \mathrm{a} . ;$ S.E. $=107.79 \mathrm{lb} . / \mathrm{ac}$. and no. of trials $=14$.

```
Crop :- Paddy (1st crop).
Ref :- As. 55(TCM).
Type :- `M'.
```

Object :-Type III-To study the effect of different levels and sources of $\mathrm{P}_{2} \mathrm{O}_{5}$ along with N on the yield of Paddy.

1. BASAL CONDITIONS to 4. GENERAL:

Same as in experiment no. 54 TCM; Type III on page 31 conducted at Darrang.
5. RESULTS :

Treatment	0	$\mathrm{~N}_{1}$	$\mathrm{~N}_{1} \mathrm{P}_{1}$	$\mathrm{~N}_{1} \mathrm{P}_{2}$	$\mathrm{~N}_{1} \mathrm{P}^{\prime}{ }^{\prime}$	$\mathrm{N}_{1} \mathrm{P}_{2}{ }^{\prime}$
Av. yield	1949	2293	2558	2800	2514	2432

G.M. $=2424 \mathrm{lb} . / \mathrm{ac} .$, S.E. $/$ mean $=148.1 \mathrm{lb} . / \mathrm{ac}$. and no. of trials $=10$.

Crop :- Paddy (Kharif).
 Centre :- Lakhimpur (c.f.).

Ref :- As. 59(SFT).
 Type, $-\mathbf{M}^{\mathbf{\prime}}$.

Object :-Type A-To study the response of Paddy to levels of \mathbf{N}, \mathbf{P} and K applied individually and in combinations.

1. BASAL CONDITIONS :

(i) (a) to (c) N.A. (ii) Alluvium and laterite. (iii) and (iv) N.A. (v) (a) 4 ploughings and plankings. (b) Transplanting. (c)-. (d) and (e) N.A. (vi) July-Aug. (vii) Unirrigated. (viii) and (ix) N.A. (x) Nov.-Dec.

TREATMENTS :

0 . =Control (no manure).
$\mathrm{n}=20 \mathrm{lb} . \mathrm{ac}$. of N as $\dot{\mathrm{A}} / \mathrm{S}$.
$\mathbf{p}=20 \mathrm{lb} \cdot / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
$\mathrm{np}=20 \mathrm{lb}$./ac. of N as $\mathrm{A} / \mathrm{S}+20 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
$\mathrm{k}=20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{K}_{2} \mathrm{O}$ as Mur. of Potash.
$\mathrm{nk}=20 \mathrm{lb}$. $/ \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{K}_{2} \mathrm{O}$ as Mur. of Pot.
$\mathrm{pk}=20 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super $+20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{K}_{2} \mathrm{O}$ as Mur: of Pot.
$\mathrm{npk}=20 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as $\operatorname{Super}+20 \mathrm{lb}: / \mathrm{ac}$. of $\mathrm{K}_{2} \mathrm{O}$ as Mur. Pot.
3. DESIGN :
(i) and (ii) The district has been divided into four agriculturally homogeneous zones and one field assistant has been posted in each zone. The field assistant conducts the trials in one revenue circle or thana in the zone and the circle/thana is changed once in two years within the same zone. Each field assistant is required to conduct 31 trials in a year, 8 on a kharif cereal, 8 on a rabi cereal, 8 on cash crops, 4 on an oilseed crop and 3 on a leguminous crop. Half the number of trials conducted are of type A and the other half of Type B on crops other than the legumes. The three trials on legumes are of type C. Residual effects of phosphate application are studied on type C trials in two out of the four zones in each district every year. The above experiments are laid out in randomly located fields in randomly selected villages in each of the 4 zones at the rate of one experiment per village. (iii) (a) $1 / 40 \mathrm{ac}$. (b) $1 / 80 \mathrm{ac}$. (iv) Yes.
4. GENERAL :
(i) Normal. (ii) N.A. (iii) Grain yield. (iv) (a) 1959-contd. (b) No. (c) Nil. (v) Lakhimpur and Sibsagar. (vi) and (vii) Nil.
5. RESULTS :

Treatment	0	n	p	np	k	nk	pk	npk
Av. yield	2087	2780	2786	2487	2830	2780	2738	2905

$$
\text { G.M. }=2674 \mathrm{lb} . / \mathrm{ac} . ; \text { S.E. } / \text { mean }=170.1 \mathrm{lb} . / \mathrm{ac} . \text { and no. of trials }=5 .
$$

Crop :- Paddy (Rabi).
 Centre :- Lakhimpur (c.f.).

Ref :- As. 59(SFT).
Type :- $\mathbf{' M}^{\mathbf{M}}$.

Object :-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Alluvium and laterite. (iii) and (iv) N.A. (v) (a) 4 to. 5 ploughings and plankings. (b) Transplanted. (c)-. (d) and (e) N.A. (vi) November 1959. (vii) Irrigated. (viii) and (ix) N.A.
(x) March 1960.
2. TREATMENTS :
$0=$ Control (no manure).
$\mathrm{n}_{1}=20 \mathrm{lb}$./ac. of N as A/S.
$\mathrm{n}_{2}=40 \mathrm{lb} . / \mathrm{ac}$. of N as A / S.
$n_{1}^{\prime}=20 \mathrm{lb}$./ac. of N as Urea.
$\mathrm{n}_{2}^{\prime}=40 \mathrm{lb} . / \mathrm{ac}$. of N as Urea.
$n_{1}{ }^{\prime \prime}=20 \mathrm{lb}$./ac. of N as $\mathrm{A} / \mathrm{S} / \mathrm{N}$.
$\mathrm{n}_{2}{ }^{\prime \prime}=40 \mathrm{lb}$./ac. of N as $\mathrm{A} / \mathrm{S} / \mathrm{N}$.
3. DESIGN and 4. GENERAL :

Same as in expt. no. 59(SFT) Type A above.
5. RESULTS :

Treatment	0	n_{1}	n_{2}	$\mathrm{n}_{\mathbf{1}}{ }^{\prime}$	$\mathrm{n}_{2}{ }^{\prime}$	$\mathrm{n}_{1}{ }^{\prime \prime}$	$\mathrm{n}_{\mathbf{2}}{ }^{\prime \prime}$
Av. yield	1580	1827	1967	1991	2041^{\prime}	1934	2098

G.M. $=1920 \mathrm{lb} . / \mathrm{ac} . ;$ S.E. $/$ mean $=89.61 \mathrm{lb} . / \mathrm{ac}$. and no. of trials $=5$.

Crop :- Paddy (Kharif).	Ref :- As. 59(SFT).
Centre :- Sibsagar (c.f.).	Type :- 'M'.

Object:-Type A-To study the response of Paddy to levels of N, P and K applied individually and in combinations.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Hilly (mostly red loam and laterite). (iii) and (iv) N.A. (v) (a) Ploughings and plankings. (b) Transplanting. (c)-. (d) and (e) N.A. (vi) July-August. (vii) Unirrigated. (viii) and (ix) N.A. (x) Dec.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 59;SFT) Type A on page 33 conducted at Lakhimpur.
5 RESULTS:

Treatment	0	n	p	np	k	nk	pk	npk
Av. yield	1983	2208	2128	2331	2137	2172	2175	2359

G.M. $=2187 \mathrm{lb} . / \mathrm{ac} .$, S.E. $/$ mean $=67.95 \mathrm{lb} . / \mathrm{ac}$. and no. of trials $=12$.

```
Grop :- Paddy (Kharif). Ref :- As. 59(SFT).
Centre :- Sibsagar. (c.f.) Type :- 'M'.
```

Object :-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses

1. BASAL CONDITIONS :

(i) (a) to (c) N.A. (ii) Hilly. (iii) Nil. (iv) N.A. (v) (a) 5 ploughings and 3 plankings. (b) Transplanting. (c)-. (d) and (e) N.A. (vi) July-August. (vii) Unirrigated. viii) N.A. (ix) N.A. (x) Nov.-Dec.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 59 (SFT) Type B on page 33 conducted at Lakhimp ur.
4. GENERAL :
(i) Normal. (ii) Some trials attacked by stem-borer and case-worm. Control measures taker. (iii) Grain yield. (iv) (a) 1959-contd. (b) No. (c) N.A. (v) Lakhimpur. (vi) and (vii) Nil.
5. RESLLTS :

Treatment	0	n_{1}	n_{2}	$\mathrm{n}_{1}{ }^{\prime}$	$\mathrm{n}_{2}{ }^{\prime}$	$\mathrm{n}_{1}{ }^{*}$	$\mathrm{n}_{2}{ }^{*}$
Av. yield	2271	2395	2378	2337	2098	2164	2329

```
Crop :- Paddy (Ist and 2nd crop).
    Ref :- As. }54\mathrm{ (TCM).
Centre :- Agartala (Tripura, c.f.).
Type :- 'M'.
```

Object :-Type I-To study the effect of different levels and sources of N on yield of Paddy.

1. BASAL CONDITIONS to 4. GENERAL :

Same as in expt. no. 55 (TCM) Type I on page 32 conducted at Udaygiri.
5. RESULTS :

First crop

Treatmant	0	$\mathrm{~N}_{1}$	$\mathrm{~N}_{\mathbf{2}}$	$\mathrm{N}_{\mathbf{1}}{ }^{\prime}$	$\mathrm{N}_{\mathbf{2}}{ }^{\prime}$
Av. yield	1621	1958	2001	1905	1946

G.M. $=1886 \mathrm{lb} . / \mathrm{ac} . ;$ S.E. $/$ mean $=96.7 \mathrm{lb} . / \mathrm{ac}$. and no. of trials $=10$.

Second crop

Treatment	0	$\mathrm{~N}_{\mathbf{1}}$	$\mathrm{N}_{\mathbf{2}}$	$\mathrm{N}_{\mathbf{1}}{ }^{\prime}$	$\mathrm{N}_{\mathbf{2}}{ }^{\prime}$
Av. yield	1975	2452	2896	2386	2674

G.M. $=2477 \mathrm{lb} . / \mathrm{ac} . ;$ S.E. $/$ mean $=181.0 \mathrm{lb} . / \mathrm{ac}$. and no. of trials $=9$.

```
Crop :- Paddy (Ist crop).
Ref :- As. 55(TCM).
Centre :- Agartala (Tripura, c.f.).
Type :- 'M'.
```

Object :-TType I-To study the effect of different sources and levels of N on yield of Paddy.

1. BASAL CONDITIONS :

Same as in expt. no. 54 (TCM) Type II(a) on page 30 conducted at Darrang.
2. TREATMENTS :
$0=$ Control.
$N_{1}=20 \mathrm{lb}$./ac. of N as A / S.
$\mathrm{N}_{2}=40 \mathrm{lb} . / \mathrm{ac}$. of N as A / S.
$\mathrm{N}_{1}{ }^{\prime}=20 \mathrm{lb}$./ac. of N as Nitrochalk.
$\mathrm{N}_{2}{ }^{\prime \prime}=40 \mathrm{lb}$./ac. of N as Nitrochalk.
Fertilizers applied two days before planting.
3. DESIGN :

Same as in expt. no. 54 (TCM) Type $I($ (a) on page 30 conducted at Darrang.
4. GENERAL:
(i) Normal heavy lodging. (ii) No. (iii) Grain yield. (iv) (a) 1953-55. (b) No. (c) N.A, (v) (a) and (b) Nil.
5. RESULTS:

Treatment	0	$\mathrm{~N}_{1}$	$\mathrm{~N}_{\mathbf{2}}$	$\mathrm{N}_{1}{ }^{\prime \prime}$	$\mathrm{N}_{2}{ }^{\prime \prime}$
Av. yield	1556	1733	1839	1828	1952

G.M. $=1782 \mathrm{lb} . / \mathrm{ac} . ;$ S.E./mean $=65.83 \mathrm{lb} . / \mathrm{ac}$. and no. of trials $=11$.

Crop:- Paddy (Ist crop).
 Centre :- Agartala (Tripura, c.f.).

Object:-Type I-To study the effect of different levels and sources of N on yield of Paddy.

1. BASAL CONDITIONS to 3. DESIGN :

Same as in expt. 54 (TCM) Type I on page 34 conducted at Agartala.
4. GENERAL:

Same in expt. no. 55 (TCM) Type İ above.
5. RESULTS :

Treatment	0	$\mathrm{~N}_{1}$	$\mathrm{~N}_{2}$	$\mathrm{~N}_{\mathbf{1}}{ }^{\prime}$	$\mathrm{N}_{\mathbf{2}}{ }^{\prime}$
Av. yield	1456	1883	2061	1903	2041

G.M. $=1869 \mathrm{lb} . / \mathrm{ac} . ;$ S.E. $/$ mean $=81.79 \mathrm{lb} . / \mathrm{ac}$. and no. of trials $=20$.

Crop :- Paddy (Ist crop). Centre :- Agartala (Tripura, c.f.).

Ref :- As. 54 (TCM).
 Type :- ' ${ }^{\mathbf{M}}$ '.

Object :-Type II (b) -To study the effect of different levels of N and P on the yield of Paddy.

1. BASAL CONDITIONS to 4. GENERAL :

Same as in expt. no. 54 (TCM) Type II (b) on page 31 conducted at Darrang.
5. RESULTS:

Treatment	0	P_{1}	$P_{1} N_{1}$	$P_{1} N_{2}$	$P_{1} N_{1}{ }^{\prime}$	$P_{1} N_{2}{ }^{\prime}$
Av. yield	1962	2334	2422	2767	2567	2481

G.M. $=2422 \mathrm{lb} . / \mathrm{ac} . ;$ S.E. $/ \mathrm{mean}=156.2 \mathrm{lb} . / \mathrm{ac}$. and no. of trials $=13$.

Crop :- Paddy (Ist crop).
 Centre :- Agartala (Tripura, c.f.).

Ref:- As. 55(TCM)
Type :- ' \mathbf{M} '.

Object :-Type III-To study the effect of different levels and sources of P along with N on the yield of Paddy.

1. BASAL CONDITIONS to 4. GENERAL:

Same as in expt. no. 54 (TCM) Type III on page 31 conducted at Darrang.
5. RESULTS :

Treatment	0	N_{1}	$\mathrm{N}_{1} \mathrm{P}_{1}$	$\mathrm{N}_{1} \mathrm{P}_{2}$	$\mathrm{N}_{1} \mathrm{P}_{1}{ }^{\prime \prime}$	$\mathbf{N a}_{1} \mathrm{P}_{\mathbf{2}}{ }^{\prime \prime}$
Av. yield	1537	1918	2208	2081	2163	2410

```
Grop :- Paddy (2nd crop).
Centre :- Agartala (Tripura, c.f.).
```

Ref :- As. 54(TCM).
Type :- ' \mathbf{M} '.

Object :-Type IV-To study the effect of N, P and K on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Alluvial (loam). (iii) Nil. (iv) N.A. (v) (a) N.A. (b) Transplanted. ic)-.
(d) and (e) N.A. (vi) November-December. (vii) Irrigated. (viii) and (ix) N.A. (x) April 1955.
2. TREATMENTS:
$0 \quad=$ Control (no mauure)
$\mathrm{N}_{1}=20 \mathrm{lb} . / \mathrm{ac}$. of N as A / S
$\mathrm{N}_{1} \mathrm{P}_{1}=20 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+20 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
$\mathrm{N}_{1} \mathrm{P}_{2}=20 \mathrm{lb}$./ac. of N as $\mathrm{A} / \mathrm{S}+40 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
$\mathrm{N}_{1} \mathrm{P}_{1} \mathrm{~K}_{1}=20 \mathrm{lb}$./ac. of N as $\mathrm{A} / \mathrm{S}+20 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super +20 lb ./ac. of $\mathrm{K}_{2} \mathrm{O}$ as Pot. Sul.
$\mathrm{N}_{1} \mathrm{P}_{1} \mathrm{~K}_{2}=20 \mathrm{lb}$.'ac. of N as $\mathrm{A} / \mathrm{S}+20 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super +40 lb ./ac. of $\mathrm{K}_{2} \mathrm{O}$ as Pot. Sul.
3. DESIGN and 4. GENERAL:

Same as in expt. no. 54 (TCM) Type II (a) on page 30 conducted at Darrang.
5. RESULTS :

RESULT			$N_{1} P_{1}$	$N_{1} P_{2}$	$N_{1} P_{1} K_{1}$	$N_{1} P_{1} K_{2}$
Treatment	0	$\mathrm{~N}_{1}$	\mathbf{N}_{1}	2543	2427	3003
Av. yield	$1 \approx 25$	2584	2748	2543		

[^1]
Crop :- Paddy (1st crop).
 Centre :- Agartala (Tripura, c.f.).
 Ref :- As. $5 \mathbf{5}$ (SFT).
 Type :- ‘' ${ }^{\prime}$ '.

Object :-Type IV-To study the effect of N, P and K on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Alluvium (loam). (iii) Nil. (iv) N.A. (v) (a) N.A. (b) Transplanting. (c) -
(d) and (e) N.A. (vi) June July. (vii) Unirrigated. (viii) and (ix) N.A. (x) November-December.
2. TREATMENT to 4. GENERAL :

Same as in expt. no. 54 (TCM) Type II (b) on page 36 conducted at Darrang.
5. RESÜLTS :

Treatment	0	N_{1}	$\mathrm{N}_{1} \mathrm{P}_{1}$	$\mathrm{N}_{1} \mathrm{P}_{2}$	$\mathrm{N}_{1} \mathrm{P}_{1} \mathrm{~K}_{1}$	$\mathrm{N}_{1} \mathrm{P}_{1} \mathrm{~K}_{2}$
Av. yield	1414	1913	1880	1877	1934	2076

Crop :- Paddy (Sali).	Ref :- As. $\mathbf{5} \mathbf{8}(\mathbf{4 5})$.
Site :- Agri. College, Jorhat.	Type :- $\mathbf{6} \mathbf{M}$;

Object :-To find out suitable doses of fertilizers for different varieties of Paddy.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy. (c) Cowdung at $50 \mathrm{md} . / \mathrm{ac}$. (ii) (a) Sandy loam. (b) $\dot{\mathrm{N}} . \mathrm{A}$. (iii) 11.8.1958. to
13.8.1958. (iv) (a) Ploughing 4 times followed by laddering. (b) Transplanted. (c) - . (d) $9^{\prime \prime} \times 9^{\prime \prime}$.
(e) 2 to 3. (v) Cowdung at $50 \mathrm{md} . / \mathrm{ac}$. (vi) As per treatments. (vii) Unirrigated. (viii) Nil. (ix) N.A..
((x) 15.12.1958 and 16.12.1958.
2. TREATMENTS :

Main-plot treatments:
2 varieties: $\mathrm{V}_{1}=$ Laudumra and $\mathrm{V}_{2}=$ Prosad bhog.
Sub-plot treatments :
All combinations of (1) and (2)
(1) 5 sources of $\mathrm{N}: \mathrm{S}_{1}=\mathrm{A} / \mathrm{S}, \mathrm{S}_{2}=\mathrm{A} / \mathrm{S} / \mathrm{N}, \mathrm{S}_{3}=\mathrm{A} / \mathrm{C}, \mathrm{S}_{4}=$ Urea and $\mathrm{S}_{5}=$ Cowdung.
(2) 4 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20, \mathrm{~N}_{2}=40$ and $\mathrm{N}_{3}=60 \mathrm{lb}$./ac.
3. DESIGN:
(i) Split-plot. (ii) (a) 2 main-plots/block; 20 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) and (b) $50^{\prime} \times 6^{\prime} 2^{\prime \prime}$. (v) No. (vi) Yes.
4. GIENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) No: (b) N.A. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 1863 lb /ac. (ii) (a) $679 \mathrm{l} \mathrm{ib} . / \mathrm{ac}$. (b) 813 lb ./ac. (iii) None of the effects is significant. (iv) Av. yield of grain in lb ./ac.

1. V marginal means $\quad=124 \mathrm{lb} . / a c$. 6. V means at the same level of $S=322 \mathrm{lb} / \mathrm{ac}$.
2. S marginal means in $\mathrm{V} \times \mathrm{S}$ table $=235 \mathrm{lb} . / \mathrm{ac}$. 7. N means at the same level of $\mathrm{V}=297 \mathrm{lb} / \mathrm{ac}$.
3. S marginal means in $\mathrm{N} \times \mathrm{S}$ table $=271 \mathrm{lb} . / \mathrm{ac}$. 8. V means at the same level of $\mathrm{N}=285 \mathrm{lb} . / \mathrm{ac}$.
4. N marginal means $=210 \mathrm{lb} . / \mathrm{ac}$. S.E. of body of $\mathrm{N} \times \mathrm{S}$ table $=332 \mathrm{lb} / \mathrm{ac}$.
5. S means at the same level of $\mathrm{V}=332 \mathrm{lb} . / \mathrm{ac}$.
```
Crop :- Paddy (Sali).
Site :- Govt. Rice Expt. Stn., Titabar.
```


Ref:- As. 54(6).

Type :- 'MV'.
Object :-To study the catalysing effect of KMnO_{4} and FeSO_{4} for releasing plant nutrients.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Paddy. (c) Nil. (ii) (a) Clay loam. (b) N.A. (iii) $6.9 .1954 /$ N.A. (iv) (a) One ploughing and laddering with the help of bullocks. (b) Line method of transplanting. (c) 6 md./ac. (d) $9^{\circ} \times 9^{\circ}$. (e) 4. (v) Cowdung broadcast. (vi) As per treatments. (vii) Unirrigated. (viii) Two hand weedings. (ix) $16^{\prime \prime}$ approx. (x) 3.1.1955 to 5.1.1955.

2. TREATMENTS :

Main-plot treatments :

2 varieties: $\mathrm{V}_{1}=$ Prosad bhog SL-834/1 and $\mathrm{V}_{2}=$ Laudumra SL-126.
Sub-plot treatments :
3 chemicals: $\mathrm{M}_{0}=$ Control, $\mathrm{M}_{1}=\mathrm{KMnO}_{4}$ at 16 lb ./ac. and $\mathrm{M}_{2}=\mathrm{FeSO}_{4}$ at 28 lb ./ac.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/block; 3 sub-plots/main-plot. (b) N.A. (iii) 3 . (iv) (a) $15^{\prime} \times 15^{\prime}$. (b) $14.25^{\prime} \times 14.25$. (v) $4.5^{\prime \prime} \times 4.5^{\prime}$. (vi) Yes.
4. GENERAL :
(i) Fair ; no lodging. (ii) Nil. (iii) Paddy yield. (iv) (a) 1954-1958. (b) and (c) Yes. (v) (a) and (b; Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $3656 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $326.9 \mathrm{lb} . / \mathrm{ac}$. (b) $148.7 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effect of M is highly significant while effect of V and interaction $M \times V$ are significant. (iv) Av. yield of grain in lb ./ac.

	M_{0}	\mathbf{M}_{1}	M_{2}	Mean
V_{1}	3102	3915	3861	3626
V_{2}	3110	4069	3879	3685
Mean	3106	3991	3870	3656

S.E. of difference of $\mathbf{t w o}$

1. V marginal means	$=154.1 \mathrm{lb} . / \mathrm{ac}$.
2. M marginal means	$=85.9 \mathrm{lb} . / \mathrm{ac}$.
3. M means at the same level of V	$=121.4 \mathrm{lb} . / \mathrm{ac}$.
4. V means at the same level of M	$=183.2 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Sali).
Site :- Govt. Rice Expt. Stn., Titabar.

Ref :- As. 57(16).
Type :- 'MV'.

O'bject:-To study the catalysing effect of KMnO_{4} and FeSO_{4} for releasing plant nutrients.

1. BASAL CONDITIONS :
(i) (a) No. (b) Paddy. (c) Nil. (ii) (a) Clay loam. (b) N.A. (iii) N.A. (iv) (a) Ploughing with country plough, laddering and harrowing. (b) 1 ransplanting in lines. (c) to (e) N.A. (v) Nil. (vi) As per treatments. (vii) Unirrigated. (viii) Two weedings. (ix) $86 \cdot 34^{\prime \prime}$. (x) N.A.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54(6) on page 38. .
4. GENERAL :
(i) Good. (ii) N.A. (iii) Paddy yield. (iv) (a) 1957-1958. (b) No. (c) Nil. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) $2818 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) 673.8 lb ./ac. (b) 58.6 lb ./ac. (iii) Main effect of M is highly significant while effect of V and interaction $M \times V$ are significant. (iv) Av. yield of grain lb./ac.

	$\mathbf{M}_{\mathbf{0}}$	\mathbf{M}_{1}	$\mathbf{M}_{\mathbf{2}}$	Mean
V_{1} $\mathrm{~V}_{2}$	2681 2909 2842 2574 2950 2950	2811 2825		
Mean	2628	2929	2896	2818

S.E. of difference of two

1. V marginal means $\quad=389.0 \mathrm{lb} . / \mathrm{ac}$.
2. M marginal means $\quad . \quad=41.4 \mathrm{lb} . / \mathrm{ac}$.
3. M means at the same level of $\mathrm{V}=58.6 \mathrm{lb} / \mathrm{ac}$.
4. \mathbf{V} means at the same level of $\mathbf{M}=391.9 \mathrm{lb} . / \mathrm{ac}$.

Grop :- Paddy (Sali).
Site :- Govt. Rice Expt. Stn.g Titabar.

Ref :- As. 58(7).
Type :- 'MV'.

Object :-To study the catalysing effect of KMnO_{4} and FeSO_{4} for releasing plant nutrients.

1. BASAL CONDITIONS :
(i) (a) No. (b) Paddy. (c) Nil. (ii) (a) Clay loam. (b) N.A. (iii) N.A. (iv) (a) Ploughing with country plough, laddering and h arrowing. (b) Line method of transplanting. (c) to (e) N.A. (v) Nil. (vi) As per treatments. (vii) Unirrigated. (viii) Two weedings. (ix) $67.87^{\prime \prime}$ (x) N.A.
2. TREATMENT and 3. DESIGN:

Same as in expt. no. 54(6) on page 38.
4. GENERAL :
(i) Good. (ii) N.A. (iii) Paddy yield. (iv) (a) 1957-1958. (b) No. (c) Nil. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) $2150 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $166.0 \mathrm{lb} . / \mathrm{ac}$. (b) $62.1 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effect of M is highly significant while effect of V and interaction $\mathrm{M} \times \mathrm{V}$ are significant. (iv) Av. yield of grain in lb ./ac.

	M_{0}	M_{1}	M_{2}	Mean
V_{1}	2118	2305	2265	2229
V_{2}	1850	2259	2105	2071
Mean	1984	2282	2185	2150

S.E. of difference of two

1. V marginal means	$=95.8 \mathrm{lb} / / \mathrm{ac}$.
2. \mathbf{M} marginal means	$=43.9 \mathrm{lb} . / \mathrm{ac}$.
3. M means at the same level of V	$=62.1 \mathrm{lb} . / \mathrm{ac}$.
4. V means at the same level of M	$=108.4 \mathrm{lb} . / \mathrm{ac}$.

```
Crop :- Paddy (Kharif).
Site :- Rice Expt. Stn., Karimganj.
Ref :- As. 54(12).
Type :- `C'.
```

Object:-To study the effect of broadcasting and dibbling on Paddy yield.

1. BASAL CONDITIONS :
(i) (a) No. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) N.A. (iii) $15.3 .1954 /$ N.A. (iv) (a) 8 ploughings followed by laddering. (b) to (e) N.A. (v) $100 \mathrm{md} . / \mathrm{ac}$. of cowdung at ploughing. (vi) Type M—142 Koimurali (early). (vii) Unirrigated. (viii) As per treatments. (ix) 64.70°. (x) 27, 28.6.1954.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 methods of sowing : $S_{1}=$ Broadcasting seed at $30 \mathrm{srs} / \mathrm{ac}$. and $\mathrm{S}_{2}=$ Dibbling at $10 \mathrm{srs} / \mathrm{ac}$. with $2^{\prime \prime} \times 6^{\prime \prime}$ spacing.
(2) 2 levels of weedings: $\mathrm{C}_{0}=$ No weeding and $\mathrm{C}_{1}=$ One weeding.
3. DESIGN :
(i) Fact. in R.B.D.
(ii) (a) 4 .
(b) $66^{\circ} \times 40^{\prime}$.
(iii) 4. (iv) (a) $66^{\prime} \times 10^{\prime}$.
(b) $64^{\prime} \times 8^{\prime}$. (v) $1^{\prime} \times 1^{\prime}$.
(vi) Yes.
4. GENERAL :
(i) N.A. (ii) No.
(iii) General growth and grain yield.
(iv) (a) 1953-1955.
(b) Yes.
(c) N.A. (v)
(a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1953 \mathrm{lb} . / \mathrm{ac}$. (ii) $137.8 \mathrm{lb} . / \mathrm{ac}$. (iii) None of the effects is significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	C_{0}	C_{1}	Mean
S_{1}	1969	1873	1921
S_{2}	2065	1904	1984
Mean	2017	1888	1953
S.E. of S.E. of	S.E. of any marginal mean		48.7 l 68.9 l

Crop:- Paddy (Kharif).
Site :- Rice Expt. Stn., Karimganj.

Ref :- As. 55(23).
Type :- 'C'.

Object :-To study the effect of broadcasting and dibbling on Paddy yield.

1. BASAL CONDITIONS :
i) No. (b) Paddy. (c) 100 md. ac. of cowdung. (il) (a) Clay loam. (b) N.A. (iii) $3.5 .1955 / \mathrm{N} . \mathrm{A}$. (iv) 8 ploughings followed by laddering. (b) to (e) N.A. (v) 100 md ./ac. of cowdung at ploughing. (vi) Type M-142 Koimurali (early'. ('vii) Unirrigated. (viii) As per treatments. (ix) $144.57^{\prime \prime}$. (x) 3.8.1955 to 5.8.1955.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54 (12; above.
4. GENERAL:
(i) N.A. (ii) No. (iii) General growth and grain yield. (iv) (a) 1953-1955, (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $3483 \mathrm{lb} . / \mathrm{ac}$. (ii) $189.2 \mathrm{lb} / \mathrm{ac}$. (iii) None of the effects is significant. (iv) Av. yield of grain in lb./ac.

	C_{0}	C_{1}	Mean
S_{1}	3604	3874	3739
S_{2}	3137	3318	3228
Mean	3370	3596	3483

$\begin{array}{ll}\text { S.E. of any marginal mean } & =66.9 \mathrm{lb} . / \mathrm{ac} . \\ \text { S.E. of body of table } & =94.6 \mathrm{lb} . / \mathrm{ac} .\end{array}$

Crop :- Paddy (Sali).
 Site :- Agri. College, Jorhat.

Ref :- As. 58(38).
Type :- ‘C'.

Object :-To find out a suitable crop rotation for Sibsagar district.

1. BASAL CONDITIONS :
(i). (a) N.A. (b) As per treatments. (c) T.C. at 40 lb /plot. (ii) (a) Sandy loam. (b) pH-4.5. (iii) N.A. 21.1.1958. (iv) (a) 4 ploughings followed by laddering. (b) Transplanting. (c) -. (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) 3. (v) T.C. at 40 lb ./plot broadcast just before puddling. (vi) Prosad bhog. (vii) Unirrigated. (viii) Nil. (ix) N.A. (x) 16.12.1958.
2. TREATMENTS :

4 crop rotations : $\mathbf{R}_{1}=A h u$ paddy - Sali paddy, $\mathbf{R}_{2}=$ Fallow-Sali paddy, $\mathrm{R}_{3}=$ Jute-Sali paddy and $\mathbf{R}_{4}=$ G.M.-Sali paddy.
3. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 4. (iv) (a) and (b) $66^{\prime} 10^{\prime \prime} \times 9^{\prime}$. (v) No. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) No. (b) and (c) Nil. (v) (a) and (b) N.A.' (vi) and (vii) Nil.
5. RESULTS :
(i) 2277 lb ./ac. (ii) $247 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb./ac.

Treatment	R_{1}	R_{2}	R_{3}	$\mathrm{R}_{\mathbf{4}}$
Av. yield	2286	2200	2412	2209
	S.E./mean	$=$	$123 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Paddy (Bao).
Site :- Deep Water Paddy Res. Stn., Roha.

Ref:- As. 55(1).
Type :- ' $\mathbf{C l}^{\prime}$.

Object :--To obtain a suitable seed rate for Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) Nil. (ii) (a) Loam. (b) Refer expt. no. 54(4) on page 13. (iii) 30.5.1955: (iv) (a) 5 ploughings and laddering with country plough. (b) Broadcasting. (c) As per treatments. (d) N.A. (e)-(v) Nil. (vi) Gout (medium). (vii) Unirrigated. (viii) Weeding and thinning. (ix) $60^{\prime \prime}$. (x) 20.12.1955.

TREATMENTS :
4 seed rates : $\mathbf{R}_{1}=60, \mathrm{R}_{2}=80, \mathbf{R}_{3}=100$ and $\mathrm{R}_{4}=120 \mathrm{lb} / \mathrm{ac}$.
3. DESIGN :
i) R.B.D.
(ii) $(a ; 4 . \quad$ 'b; N.A. 'iii)
(iv) (a) $10^{\prime} \times 15^{\prime}$.
(b) $8^{\prime} \times 13^{\prime} . \quad$ (v) $1^{\prime} \times 1^{\prime} . \quad$ (vi) Yes.
4. GENERAL :
(i, N.A. (ii) Nil. (iii) Grain yield. (iv) (a) 1954-1956. (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $3435 \mathrm{lb} . / \mathrm{ac}$. (ii) $732.9 \mathrm{lb} . / \mathrm{ac}$. (iii; Treatment differences are significant. (iv) Av. yield of grain in lb. ac.

Treatment	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{3}}$	$\mathbf{R}_{\mathbf{4}}$
Av. yield	3310	3071	3633	3727
	S.E./mean	$=$	$366.4 \mathrm{lb} . / \mathrm{ac}$.	

```
Crop :- Paddy (Bao).
Site :- Deep Water Paddy Res. Stn., Roha.
```

Ref:- As. 56(1).
Type :- 'C'.

Object :-To obtain a suitable seed rate for Paddy.

1. BASAL CONDITIONS ;
(i (a) Nil. (b) Paddy. (c) Nil. (ii) (a) Loam. (b) Refer expt. no. 54(4) on pag. 13. (iii, 30.3.1956.
(iv) (a) 5 plougtings and laddering with country plough. (b) Broadcast. (c) As per treatments. (d) and (e)-. (v) Nil. (vi; Gout Bao. (vii) Unirrigated. (viii) Weeding and thinning. (ix) $69.41^{\prime \prime}$. (x) 30.11.1956.
2. TREATMENTS :

Same as in expt. no. 55 (1) on page 41.
3. DESIGN :
i) R.B.D. (ii) (a) 4
(b) N.A.
(iii) 5 . (iv)
(a) $17^{\prime} \times 12^{\prime}$.
(b) $15^{\prime} \times 10^{\prime}$.
(v) $1^{\prime} \times I^{\prime}$. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) No incidence of pests and diseases. (iii) Grain yield. (iv) (a) 1954-1956. (b) io. (c: Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) 1210 lb ./ac. (ii; $342.4 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb./ac.

Treatment	\mathbf{R}_{1}	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{3}}$	$\mathbf{R}_{\mathbf{4}}$
Av. yield	1352	1138	1246	1106
	S.E. $/$ mean	$=$	$153.0 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Paddy (Sali).	Ref :- As. 59(29).
Site :- Rice Expt. Stn., Titabar.	Type :- 'C'.

Object:-To study the Chinese and Japanese methods of Paddy cultivation.

1. BASAL CONDITIONS :
(i) (a) Nil. .b; Paddy. (c) Nil. (ii) (a) Clay loam. (b) N.A. (iii) 12,20 and 25.6 .1959 . (iv) (a) 8 ploughings followed by laddering. (b) Transplanting. (c) to (e) As per treatments. (v) Nil. (vi* 406 6;/93-1 (medium, (vii) U'nirrigated. (viii) 2 weedings. (ix) $69.55^{\prime \prime}$. (x) 30.11.1959, 1.12 .1959 and 2.12.1959.

2. TREATMENTS :

3 methods of cultivation : $\mathrm{M}_{1}=$ Chinese. $\quad \mathrm{M}_{2}=$ Japanese and $\mathrm{M}_{3}=$ Country.

3. DESIGN

(i) R.B.D. (ii) (a) 3 . (b) $180^{\prime} \times 30^{\prime}$. (iii) 6 . (iv) (a) $30^{\prime} \times 30^{\prime}$. (b) $28^{\prime} \times 28^{\prime}$ for $\mathrm{M}_{1}, 26^{\prime} \times 26^{\prime}$ for M_{2} and $27^{\prime} \times 27^{\prime}$ for M_{3}. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Not satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1959-contd. (b) Yes. (c) N.A. (v) (a) Karimganj. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $3188 \mathrm{lb} . / \mathrm{ac}$. (ii) 250 lb ./ac. (iii) Treatment differences are significant. (iv) Av. yield of grain in lb ./ac.

Treatment	1	2	3

Av. yield	2815	3564	3187

S.E. $/$ mean $=102 \mathrm{lb} . / \mathrm{ac}$.

```
Crop :- Paddy (Rabi).
Site :- Rice Expt. Stn., Karimganj.
Ref :- As. 54(14).
Type :- 'CM'.
```

Object :-To study the Japanese vs. local method of Paddy cultivation.

1. BASAL CONDITIONS:

(i) (a) No. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) N.A. (iii) 15.7.1954/18.8.1954. (iv) (a) 8 ploughings followed by laddering. (b) Transplanting. (c) As per treatments. (d) $9^{\prime \prime} \times 9^{\prime \prime}$ for treatment 1 and $10^{\prime \prime} \times 10^{\prime \prime}$ for treatment 2. (e) 4. (v) Nil. (vi) Swarnasail S.C. 412-56(medium). (vii) Unirrigated. (viii) As per treatments. (ix) $66.96^{\prime \prime}$. (x) 17.12.1954 to 19.12.1954.
2. TREATMENTS :

1. Local method: $6 \mathrm{md} . / \mathrm{ac}$. of seed in seed beds, $100 \mathrm{md} . / \mathrm{ac}$. of cowdung at the time of ploughing and one weeding.
2. Japanese method : $5 \mathrm{md} . / \mathrm{ac}$. of seed in seed beds, $300 \mathrm{md} . / \mathrm{ac}$. of cowdung at the time of ploughing, $200 \mathrm{lb} . / \mathrm{ac}$. of A / S and B.M. in 1:1 ratio at puddling, one weeding two weeks after transplanting, 200 lb ./ac. of manure mixture applied one month after transplanting by deep layering method and one weeding and one mulching a month before flowering.
3. DESIGN:
(i) R.B.D. (ii) (a) 2. (b) $60.75^{\prime} \times 31.50^{\prime}$. (iii) 6 . (iv) (a) $60.75^{\prime} \times 15.75^{\prime}$. (b) $60^{\prime} \times 15^{\prime}$. (v) One row kept on all sides. (vi) Yes.
4. GENERAL :
(i) and (ii). N.A. (iii) Grain yield. (iv) (a) 1953-1955. (b) Yes. (c) N.A. (v) (a) and (b) N.A.
(vi) and (vii) Nil.
5. RESULTS :
(i) 3055 lb ./ac. (ii) $209.6 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment difference is not significant. (iv) Av. yield of grain in lb./ac.

Treatment	$\mathbf{1}$	2
Av. yield		

Grop :- Paddy (Rabi).
Site :- Rice Expt. Stn., Karimganj.

Ref :- As. 55(25).
Type :- ${ }^{6} \mathbf{C M}^{\prime}$.

Object :-To study Japanese vs. local method of Paddy cultivation.

1. BASAL CONDITIONS :

(i) (a) No. (b) Paddy. (c, As per treatments. (ii) (a) Clay loam. (b) N.A. (iii) 7.7.1955/20.8.1955. (iv) (a) 8 ploughings followed by laddering. (b. Transplanted. (c) As per treatments. (d) N.A. (e) 4 . (v) N.A. (vi) Swarnasail; S.C. 412-56 'medium;. (vii) Unirrigated. (viii) As per treatments. (ix) $86.88^{\prime \prime} . \quad$ (x) 12 , 13.12.1955.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54(14) on page 43.
4. GENERAL :
(i) and (ii) N.A. (iii) Grain yield. (iv) (a) 1953-1955. (b) Yes. (c) N.A. (v) (a) and (b) N.A.
(vi) and (vii) Nil.
5. RESULTS :
(i) 2092 lb ./ac. (ii) 87.1 lb ./ac. (iii) Treatment difference is highly significant. (iv) Av. yield of grain in lb./ac.

Treatment	1	2
Av. yield	1962	2222
	S.E./mean $=35.6 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Paddy (Kharif).
 Site :- Rice Expt. Stn., Karimganj.

> Ref :- As. 55(26).

Type :- 'CM'.
Object:-To study Japanese vs. local method of Paddy cultivation.

1. BASAL CONDITIONS :
(i) (a) No. (b) Paddy. (c, $100 \mathrm{md} . / \mathrm{ac}$. of cowdung. (ii) (a) Clay loam. (b) N.A. (iii) $25.5 .1955 / 21$ to 23.6.1955. (iv) (a) 8 ploughings with country plough followed by laddering. (b) Transplanting. (c) As per treatments. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e; 4. (v; 100 md ./ac. of cowdung applied before ploughing. (vi) Kasalath As-2 (medium). (vii) Unirrigated. (viii) Hoeing and weeding twice. (ix) 144.57". (x) 14.9.1955.
2. TREATMENTS:
3. Local method: 6 md ./ac. of seed in seed beds.
4. Japanese method : $3 \mathrm{md} . / \mathrm{ac}$. of seed in seed beds, $200 \mathrm{lb} . / \mathrm{ac}$. of Super +200 lb ./ac. of A/S applied in two doses first at puddling and second one month after planting.
5. DESIGN :
(i) R.B.D. (ii) (a) 2 . (b) $60.5^{\prime} \times 31.0^{\prime}$. (iii) 6 . (iv) (a) $60.5^{\prime} \times 15.5^{\prime}$. (b) $60^{\prime} \times 15^{\prime}$. (v) One row kept on all sides. (vi’ Yes.
6. GENERAL :
(i) Crop under treatment 2 lodged. (ii) Nil. (iii) General growth, tiller count and grain yield. (iv) (a) 1955-1957. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
7. RESULTS:
(i) $1939 \mathrm{lb} . / \mathrm{ac}$. (ii) 135.5 lb .iac. (i.i) Treatment difference is not significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$

Treatment	1	2
Av. yield	1978	1901
	S.E./mean $=55.3 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Paddy (Kharif).	Ref :- As. 56(32).
Site :- Rice Expt. Stn., Karimganj.	Type :- 'CM'.

Object:-To study Japanese vs. local method of Paddy cultivation.

1. BASAL CONDITIONS:
(i) (a) No. (b) Paddy. (c) As per treatments. (ii) (a) Clay loam (b) N.A. (iii) $22.5 .1956 / 15$ to 17.6.1956. (iv) (a) Ploughing with country plough followed by laddering. (b) Transplantitg. (c) As per treatments. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) 4 . (v) 100 md ./ac. of cowdung applied before ploughing. (vi) Kasalath As-2 (medium). (vii) Unirrigated. (viii) Hoeing and weeding twice. (ix) 129.96". (x) 12.9.1956.
2. TREATMENTS and 3. DESIGN:

Same as in expt. no. $55(26)$ on page 44.
4. GENERAL :
(i) Ctop under treatment 2 lodged. (ii) N.A. (iii) General growth, tiller count and grain yield. (iv) (à) 1955-1957. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1968 \mathrm{lb} . / \mathrm{ac}$. (ii) $83.4 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment difference is highly significant. (iv) Av. yield of grain in lb.jac.

Treatment	2	
Av. yield	1821	2115
	S.E./mean $=34 \cdot 1 \mathrm{lb} . / \mathrm{ac}$.	

```
Cirop :- Paddy (Kharif). Ref:- As. 57(28).
Site :- Rice Expt. Stn., Karimganj.
Type :- 'CM'.
```

Object :-To study Japanese vs. local method of Paddy cultivation.

1. BASAL CONDITIONS :
(i) (a) No.
(b) Paddy.
(c) As per treatments.
(ii) (a) Clay loam.
(b) N.A.
(iii) N.A. (iv) (a) 8 ploughings with country plough followed by laddering. (b) Transplanting. (c) As per treatment. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) 4 . (v) $100 \mathrm{md} . / \mathrm{ac}$. of cowdung applied before ploughing. (vi) Kasalath Ás-2 (medium). (vii) Unirrigated. (viii) Hoeing and weeding twic̣e. (ix) and (x) N.A.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. $55(26)$ on page 44.
4. GENERAL :
(i) Crop under treatment 5 lodged. (ii) Nil. (iii) General growth, tiller count and grain yield. (iv) (a) 1955 -1957. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1636 \mathrm{lb} . / \mathrm{ac}$. (ii) $197.5 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment difference is not significant. (iv) Av. yield of grain
in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	1	2
Av. yield	1620	1652
	S.E. $/$ mean	$=80.6 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Sali).	Ref :- As. 54(1).
Site :- Rice Expt. Stn., Titabar.	Type :- 'CM'.

Object :-To compare Japanese and local methods of Paddy cultivation.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) Cowdung at $100 \mathrm{md} . / \mathrm{ac}$, (ii) (a) Clay loam. (b) N.A. (iii) 29.6.1954/7.8.1954. (iv) (a) One ploughing and laddering with the help of bullocks. (b) Line method. (c) $2.5 \mathrm{md} . / \mathrm{ac}$. for Japanese and $6 \mathrm{md} . / \mathrm{ac}$. for local method. (d) $10^{\prime \prime} \times 10^{\prime \prime}$ for Japanese method and $9^{\prime \prime} \times 9^{\prime \prime}$ for local method. (e) 1 for Japanese and 4 for local method. (v) Cowdung at $200 \mathrm{md} . / \mathrm{ac}$. before puddling. (vi) Laudumra. (vii) Unirrigated. (viii) Two weedings. (ix) N.A. (x) 24.12.1954.
2. TREATMENTS :
3. Japanese method: Cowdung at $100 \mathrm{md} . / \mathrm{acre}, \mathrm{A} / \mathrm{S}$ at $200 \mathrm{lb} . / \mathrm{ac}$. B.M. at 200 lb ./ac. after final preparation of land.
4. Local method.
5. DESIGN :
(i) R.B.D. (ii; (a) 2. (b; N.A. (iii) 3. (iv) (a) $16^{\prime} .5 \times 9^{\prime}$. (b) $15^{\prime} \times 7.5^{\prime}$. (v) $9^{\prime \prime} \times 9^{\prime \prime}$. (vi) Yes.
6. GENERAL:
(i) Fair. Slight lodging in treatment (1). (ii) Nil. (iii) Grain yield. (iv) (a) 1953-1955. (b) Yes. (c; N.A. (v) (a) Karimganj. (b) N.A. (vi) and (vii) Nil.
7. RESULTS :
(i) $4993 \mathrm{lb} / \mathrm{ac}$. (ii) $215.3 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment difference is not significant. (iv) Av. yield of grain in $\mathrm{Ik} . / \mathrm{ac}$.

Treatment	1	2
Av. yield	5308	4679
	S.E./mean $=$	$124.3 \mathrm{lb} . / \mathrm{ac}$.

Grop :- Paddy (Sali).	Ref :- As. 54(3).
Site :- Rice Expt. Stn., Titabar.	Type :- ${ }^{\text {'CM'. }}$

Object :-To compare Japanese and local methods of Paddy cultivation.

1. BASAL CONDITIONS and 2. TREATMENTS :

Same as in expt. no. $54\{1$; on page 45.
3. DESIGN :
(i) R.B.D. (ii) (a; 2. (b) N.A. (iii) 6. (iv) (a) $31^{\prime} .5 \times 16^{\prime} .5$. (b) $30^{\prime} \times 15^{\prime}$. (v) $9^{\circ} \times 9^{\prime \prime}$. (vi) Yes.
4. GENERAL :

Same as in expt. no. 54(1) on page 45.
5. RESULTS :
(i) 3831 lb. 'ac. (ii) $261.2 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment difference is highly significant. (iv) Av. yield of grain in lb./ac.

Treatment	1	2
Av. yield	4403	3259
	S.E.jmean	$=106.7 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Site :- Govt. Agri. Farm, Jorhat.

Ref :- As. 54(19).
Type :- 'D'.

Object :--To study the effect of weedicide on the yield of Paddy.

1. BASAL CONDITIONS :
(i) 'a) Nil. (b) Mustard. (c) 150 md /ac. of cowdung. (ii) (a) Sandy loam. (b) N.A. (iii) 5.4.1954/N.A.
(iv) (a) 5 ploughings, 2 ladderings and hoeing. (b) Broadcasting. (c $100 \mathrm{lb} / \mathrm{ac}$. (d) and (e) -. (v) Nil.
(vi) Rangadoria (medium;. (vii) Unirrigated. (viii) As per treatments. (ix) $30.42^{\prime \prime}$. (x) 6.7.1954.
2. TREATMENTS :
$\mathrm{T}_{1}=$ Control.
$\mathrm{T}_{2}=$ Spraying Dicotin-2 gallons in 100 gallens of water.
$\mathrm{T}_{3}=\mathrm{T}_{2}+$ extra dose of 3 lbs . of Dicotin in 40 gallons of water.
Hand spraying 3 times at intervals of 15 days.
3. DESIGN :
(i) R.B.D. 'ii) (a) 3.
(b) $54^{\prime} \times 23^{\prime}$. (iii) 4 . (iv) (a) $23^{\prime} \times 18^{\prime}$.
(b) $20^{\prime} \times 15^{\prime}$.
(v) $1.5^{\prime} \times 1.5^{\prime}$ (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Grain yield. (iv) (a) 1953-1955. (b) Yes. (c) Nil. (v) (a) and (b) N.A.
(vi) Nil. (vii) Expt. was conducted by Botanical section.
5. RESULTS :
(i) $1774 \mathrm{lb} . / \mathrm{ac}$. (ii) $605.5 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of grain in $1 \mathrm{~b} . / \mathrm{ac}$.

Treatment	T_{1}	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$
Av. yield	1648	2022	1652
	S.E./mean	$=$	$302.7 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
 Site :- Govt. Agri. Farm, Jorhat.

Ref :- As. 55(33). Type :- ‘D'.

Object :-To study the effect of weedicide on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Mustard. (c) $150 \mathrm{md} /$ /ac. of cowdung. (ii) (a) Sandy loam. (b) N.A. (iii) $12.4 \cdot 1955 / \mathrm{N} . A$. (iv) (a) 5 ploughings, 2 ladderings and hoeing. (b) Broadcasting. (c) $100 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) -. (v) Nil. (vi) Rangadoria (medium). (vii) Unirrigated. (viii) As per treatments. (ix) 31.29". (x) 13.7.1955.
2. TREATMENTS :

Same as in expt. no. 54(19) on page 46.
3. DESIGN :
(i) R.B.D.
(ii) (a) 3 .
(b) $54^{\prime} \times 23^{\prime}$.
(iii) 4
(iv) (a) $23^{\prime} \times 18^{\prime}$.
(b) $20^{\prime} \times 15^{\prime}$. (v) and (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Grain yield. (iv) (a) 1953-1955. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Expt. was conducted by Botanical section.
5. RESULTS :

(i) $1771 \mathrm{lb} . / \mathrm{ac}$. in lh./ac.	(ii) 221.0 lb /ac.	(iii) Treatment differences are highly significant. (iv) Av. yield of grain	
Treatment	T_{1}	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$
Av. yield	1326	2081	1907
	S.E./mean $=$	$110.5 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Paddy (Kharif).
Site :- Govt. Agri. Farm, Jorhat.

Ref :=As. 58(53).
Type :- 'D'.

Object:-To find out the best time and method of application of weedicides to Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Fallow. (c) Nil. (ii) (a) Sandy loam. (b) N.A. (iii) 21.3.1958. (iv) (a) Ploughing and laddering. (b) Broadcasting. (c) $30 \mathrm{srs} / \mathrm{ac}$. (d) and (e) -. (v) Cowdung at $100 \mathrm{mds} / \mathrm{ac}$. (vi) Rangadoria (vii) Unirrigated. (viii) As per treatments. (ix) N.A. (x) 30.6.1958 and 1.7.1958.

2. TREATMENTS:

9 methods of weeding and application of weedicide : $M_{0}=$ no manure, $M_{1}=$ Local method, $M_{2}=$ Pre-emergence application of weedicide once, $\mathbf{M}_{3}=$ Post-emergence application of weedicide once, $\mathbf{M}_{4}=$ Post-emergence application of weedicide twice, $\mathrm{M}_{5}=\mathrm{M}_{2}+\mathrm{M}_{3}$, $\mathrm{M}_{6}=\mathrm{M}_{2}+$ cultural method of weeding, $\mathrm{M}_{7}=\mathrm{M}_{3}+$ cultural method of weeding, $M_{8}=M_{\mathbf{j}}+$ cultural method of weeding.
Fernoxone at 8 ozs in 60 gallons of water/ac. was used as weedicide for spraying.
3. DESIGN :
(i) R.B.D. (ii)
(ii) (a) 9 (b) $153^{\prime} \times 14^{\prime}$.
(iii) 4. (iv) (a) $14^{\prime} \times 17^{\prime}$.
(b) $12^{\prime} \times 15^{\prime}$. (v) $1^{\prime} \times 1^{\prime}$. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nll (iii) Grain yield. (iv) (a) 1958-contd.
(b) No. (c
(c) Nil. (v) (a) and (b) N.A. (vi) Nil. (vii) Expt. was conducted by Mycological section.
5. RESULTS :
(i) $1193 \mathrm{lb} . / \mathrm{ac}$. (ii) 143 lb ./ac. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in lb./ac.

Treatment	M_{0}	M_{1}	M ${ }_{2}$	M_{3}	M_{4}	M_{5}	M_{6}	M_{7}	M_{8}
Av. yield	665	1210	1089	1016	1150	1065	1271	1331	1936
	S.E./mean $=71 \mathrm{lb} . / \mathrm{ac}$.								

$$
\begin{array}{ll}
\text { Crop :- Paddy (Kharif). } & \text { Ref :- As. 59(51). } \\
\text { Site :- Govt. Agri. Farm, Jorhat. } & \text { Type :- 'D'. }
\end{array}
$$

Object :-To find out the best time and method of application of weedicide to Paddy.
1 BASAL CONDITIONS :
(i’’ 'a’ No. 'b’ Fallow. 'c', Nil. (ii) (a) Sandy loam. (b) N.A. (iii; 30.3.1959. (iv) (a’ Ploughing and laddering. (b) Broadcasting. (c) 30 srs ;ac. (d) and (e) -. (v) Cowdung at $100 \mathrm{mds} / \mathrm{ac}$. (vi) Rangadoria Ahu. (vii) Unirrigated. :viii; As per treatments. (ix; N.A. (x) 1.7.1959 and 2.7.1959.
2. TREATMENTS :

Same as in expt, no. 58 (53) on page 47 with one extra treatment as follows:
$\mathrm{T}=$ Cultural method of weeding (with implements) +a hand weeding.
3. DESIGN
(i) R.B.D. (ii; ,a) 10 . (b) $138^{\prime} \times 17^{\prime}$. (iii) $4 . \quad$ (iv) (a) $14^{\prime} \times 17^{\prime}$. (b) $12^{\prime} \times 15^{\prime} . \quad$ (v) $1^{\prime} \times 1^{\prime}$. (vi) Yes.
4. GENERAL :
(i) Normal. (ii; Nil. (iii, Grain yield. (iv) (a) 1958 -contd. (b) No. (c) Nil. (v) (a) and (b) N.A.
(vi) Nil. (vii) Expt. was conducted by Mycological section.
5. RESULTS :
(i) $1183 \mathrm{lb} . / \mathrm{ac}$. (ii) $482 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb./ac.

Treatment	M_{0}	M_{1}	M_{2}	M_{3}	$\mathrm{M}_{\mathbf{4}}$	$\mathrm{M}_{\mathbf{5}}$	$\mathrm{M}_{\mathbf{6}}$	M_{7}	$\mathrm{M}_{\mathbf{8}}$	T
Av. yield	756	1150	998	1029	1271	1240	1301	1422	1603	1059

Grop :- Paddy (Kharif).	Ref :- As. 59(51a).
Site :- Govt. Agri. Farm, Jorhat.	Type :- 'D'.

Object :-To find out a suitable pesticide for Paddy crop.

1. BASAL CONDITIONS :

(i) (a) No. (b) Paddy. (c) Nil. (ii) (a) Sandy loam. (b) N.A. (iii) 21.3.1959. (iv) (a) Ploughing and laddering. (b) Broadcasting. (c) $1 \mathrm{md} . / \mathrm{ac}$. (d) and (e)-. (v) Nil. (vi) Rangadoria. (vii) Unirrigated. (viii) Nil. (ix) N.A. (x) 29.6.1959.
2. TREATMENTS :

1. Folidol at 7 oz . in 104 gallons/ac. of water.
2. Endrex at 7 oz . in 104 gallons/ac. of water.
3. Ekatox at 7 oz . in 104 gallons/ac. of water.
4. Hexidol at 1 lb . in 104 gallons/ac. of water.
5. Guesarol 550 at 1 lb . in 104 gallons/ac. of water.
6. Control.
7. DESIGN :
(i) R.B.D. (ii) (a) 6 .
(b) $138^{\prime} \times 12^{\prime}$.
(iii) 5. (iv) (a) $12^{\prime} \times 23^{\prime}$.
(b) $11^{\prime} \times 22^{\prime}$
(v) 0.5' alround. (vi) Yes.
8. GENERAL:
(i) Fair. (ii) Paddy stem-borer, rice-bug, rice case-worm and rice grass-hopper were noticed. Control measures as per treatments. (iii) 3 sq. ft. area was selected at random from each plot and percentage of plants affected by different pests was observed. (iv) (a) 1959—contd. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) Nil. (vii) Expt. was conducted by Entomological section.

5. RESULTS :

(i) 10.34 percent. (ii) 0.71 percent. (iii) Treatment differences are highly significant. (iv) Percentage of affected plants.

Treatment	1	2	3	4	5	6
Percentage	18.58	9.73	9.75	10.21	10.70	13.06
	S.E./mean	$=$	0.32 percent			

```
Grop :- Paddy.
Site :- Rice Expt. Stn., Karimganj.
```

Ref :- As. 58(22). Type :- ‘D'.

Object :-To study the effect of soaking seed in solution of sodium bicarbonate on Paddy.

1. BASAL, CONDITIONS :
(i) (a) No. (b) Paddy. (c) $100 \mathrm{md} . / \mathrm{ac}$. of cowdung. (ii) (a) Clay loam. (b) N.A. (iii) 22.7.1958/1.9.1958 (iv) (a) 8 ploughings and laddering. (b) Transplanting. (c) $2 \frac{1}{2} \mathrm{mds} / \mathrm{ac}$. (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) 2 . (v) $200 \mathrm{lb} . / \mathrm{ac}$. of mixed fertilizer and $100 \mathrm{md} . / \mathrm{ac}$. of cowdung in seed bed. 40 lb ./ac. of N as $\mathrm{A} / \mathrm{S}, 40 \mathrm{lb}$. $/ \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super and $100 \mathrm{md} / \mathrm{ac}$. of cowdung applied during preparation of field. (vi) S. 22 (Sail, medium). (vii) Unirrigated. (viii) 2 weedings by Japanese weeder. (ix) $79.1^{\prime \prime}$. (x) 28.11.1958.

2. TREATMENTS:

1. Soaking seeds in sodium bicarbonate solution of 40% strength for two days before sowing.
2. Control (no soaking).
3. DESIGN:
(i) R.B.D. (ii) (a) 2 . (b) N.A. (iii) 5 . (iv) (a) $15.75^{\prime} \times 10.50^{\prime}$. (b) $15^{\prime} \times 9.75^{\prime}$. (v) $9^{\prime \prime} \times 9^{\prime \prime}$. (vi) Yes.
4. GENERAL :
(i) Crop lodged badly due to heavy wind on 12.11 .1958 . (ii) Nil. (iii) Grain yield. (iv) (a) 1958-1960
(b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $2357 \mathrm{lb} . / \mathrm{ac}$. (ii) $78 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment difference is not significant. (iv) Av. yield of grain in lb./ac.

Treatment	1	2
Av. yield	2383	2331

$$
\text { S.E./mean }=35 \mathrm{lb} . / \mathrm{ac} .
$$

Crop :- Paddy.
 Site :- Rice Expt. Stn., Karimganj.

Ref :- As. 59(19).
Type :- ' D '.
Object :-To study the effect of soacking seed in solution of sodium bicarbonate on Paddy.

1. BASAL CONDITIONS :
(i) (a) No. (b) Paddy. (c) 100 lb ./ac. of cowdung : 40 lb ./ac. of N as A / S and $40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super (ii) (a) Clay loam. (b) N.A. (iii) $26.6 .1959 / 3.8 .1959$. (iv) (a) 8 ploughings followed by weeding and laddering. (b) Transplanting. (c) $2 \frac{2}{2} \mathrm{mds} / \mathrm{ac}$. in seed bed. (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) 2 . (v) 200 lb ./ac. of mixed fertilizer and 100 md ./ac. of cowdung in seed bed. 40 lb ./ac. of N as $\mathrm{A} / \mathrm{S}, 40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Supar and 100 md ./ac. of cowdung applied during the preparation of field. (vi) $\mathrm{S}-22$ (Sail, medium). (vii) Liairrigated. (viii) 2 weedings by Japanese weeder. (ix) $68.31^{\prime \prime}$. (x) 9.12 .1959.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 58(22) on page 49.
4. GENERAL :
(i) Crop lodged. (ii) Nil. (iii) Grain yield. (iv) (a) 1958-1960. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil
5. RESULTS :
(i) 3011 lb ./ac. (ii) 84.89 lb ./ac. (iii) Treatment difference is not significant. (iv) Av. yield of grain in lb ./ac.

Treatment		1	2
Av. yield	\cdot	3008	3014

S.E./mean $=38.12 \mathrm{lb} . / \mathrm{ac}$.
Crop :- Paddy (Sali).
Site :- Govt. Rice expt. Stn., Titabar.

Ref:- As. 57(51).
Type :- ‘'D’.
Object :-To study the best time of application of weedicide to Paddy.

1. BASAL CONDITIONS

i) (a) Nil. (b; Fallow. (c) Nil. (ii) (a) Clay loam. (b) N.A. (iii) 28.7.1957. (iv) (a) Ploughing and harrowing. (b) Transplanted. (c) N.A. (d) $10^{\prime \prime} \times 10^{\prime \prime}$. (e) $6 . \quad$ (v) $150 \mathrm{md} . / \mathrm{ac}$. of cowdung at 'vi) Prosad bhag. (vii; Unirrigated. (viii) Nil. (ix) N.A. (x) 14.12.1957.
2. TREATMENTS :

1. Control no weeding).
2. Local method of weeding.
3. Post-emergence application of weedicide once.
4. Post-emergence application of weedicide twice.
5. Post-emergence application of weedicide once + cultural method of weeding.

Fernoxone at 8 oz . in 60 gallons of water/ac. was sprayed.
3. DESIGN :
(i) R.B.D.
(ii) (a) 5. (b) $36^{\prime} \times 72^{\prime}$.
(iii) 6.
v) (a) $36^{\prime} \times 15^{\prime}$
(b) $33^{\prime} \times 12^{\prime}$.
(v) $1.5^{\prime} \times 1.5^{\prime}$
(vi) Yes.
4. GENERAL :
i Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1957 -contd. (b) No. (c) Nil. (v) (a) and (b) N.A.
(vi Nil. (vii) Expt. was conducted by Mycological section.
5. RESULTS :
(i) 2313 lb. 'ac. (ii) 163 lb ./ac. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in lb./ac.

Treatment	1	2	3	4	5
Av. yield	2134	2354	2199	2386	2492
	S.E./mean	$=$	66 lb ./ac.		

```
Crop :- Paddy (Sali).
Ref :- As. 58(55).
```

Site :- Govt. Paddy Farm, Titabar.
Type :- ‘D'.

Object :-To study the best time of application of weedicide to Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Fallow. (c) Nil. (ii) (a) Clay loam. (b) N.A. (iii) 31.7.1958. (iv) (a) Ploughing and harrowing. (b) Transplanted. (c). N.A. (d) $10^{\prime \prime} \times 10^{\prime \prime}$. (e) 6 . (v) Cowdung at $150 \mathrm{md} . / \mathrm{ac}$. (vi) (vi) Prosad bhog. (vii) Unirrigated. (viii) Nil. (ix) 17.63". (x) 29.11.1958.
2. TREATMENTS and 3. DESIGN:

Same: as in exp. no. 57(51) on page 50.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1957-contd. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) Nil. (vii) Expt. was conducted by Mycological section.
5. RESULTS :
(i) $2646 \mathrm{lb} . / \mathrm{ac}$. (ii) $192 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in $\mathrm{lb} / \mathrm{ac}$.

Treatment	1	2	3	4	5
Av. yield	2076	2860	2557	2603	3135
	S.E./mean $=78 \mathrm{lb} . / \mathrm{ac}$.				

Crop :- Paddy(Sali).
 Site :- Govt. Paddy Farm. Titabar.

Ref :- As. 59(54).
Type :- ' ${ }^{D}$ '.

Object:-To study the best time of application of weedicide to Paddy.

1. BASAL CONDITIONS

(i) (a) Nil. (b) Fallow. (c) Nil. (ii) (a) Clay loam. (b) N.A. (iii) 2.9.1959. (iv) (a) Ploughing and harrowing.
(b) Transplanted. (c) N.A. (d) $10^{\prime \prime} \times 10^{\prime \prime}$. (e) 6 . (v) Cowdung at $150 \mathrm{md} . / \mathrm{ac}$. (vi) Prosad bhog. (vii) Unirrigated. (viii) Nil. (ix) $30^{\circ} 99^{\prime \prime}$. (x) 29.12.1959.

2. TREATMENTS :

1. Control (no weeding).
2. Local method of weeding.
3. Post-emergence application of weedicide once.
4. Post-emergence application of weedicide twice.
5. Post-emergence application of weedicide once +cultural method of weeding once.
6. Cultural method of weeding once.

Fernoxone 8 oz . in 60 gallons/ac. of water sprayed.
3. DESIGN :
(i) R.B.D. (ii) (a) 6 . (b) $15^{\prime} \times 213^{\prime}$. (iii) 6 . (iv) (a) $36^{\prime} \times 15^{\prime}$. (b) $33^{\prime} \times 12^{\prime}$. (v) $1 \cdot 5^{\prime} \times 1 \cdot 5^{\prime}$. (vi) Yes.
4. GENIERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1957-contd. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) Nil. (vii) Expt. was conducted by Mycological section.
5. RESULTS :
(i) $2705 \mathrm{lb} . / \mathrm{ac}$. (ii) 129 lb ./ac. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	1	2	3	4	5	6
Av. yield	2067	2869	2557	2621	3148	2965
	S.E./mean	$=$	$52 \mathrm{lb} . / \mathrm{ac}$.			

```
Crop :- Paddy (Sali). Ref :- As. 57(49).
Site :- Govt. Paddy Farm, Titabar. Type :- 'D'.
```

Object:-To find out the suitable weedicide and its effective dose to control Paddy weeds.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Fallow. (c) Nil. (ii) (a) Clay loam. (b) N.A. (iii) 27.7.1957. (iv) (a) Ploughing and laddering. (b) Transplanting. (c) N.A. (d) $10^{\prime \prime} \times 10^{\circ}$. (e) 6. (v) N.A. (vi) Prosad bhog. (vii) Unirrigated. (viii) Nil. (ix) N.A. (x) 12 and 13.12.1957.

2. TREATMENTS :

Main-plot treatments :
4 weedicides : $S_{1}=$ Fernoxone, $S_{2}=$ Dicotox, $S_{3}=$ Kathon and $S_{4}=$ Agroxone.
Sub-plot treatments :
5 doses of weedicide : $\mathrm{L}_{0}=0, \mathrm{~L}_{1}=8, \mathrm{~L}_{2}=12, \mathrm{~L}_{3}=16$ and $\mathrm{L}_{4}=20 \mathrm{oz}$. in 60 gallons /ac. of water.
3. DESIGN :
(i) Split-plot.
(ii) (a) 4 main-plots/block; 5 sub-plots/main-plot.
(b) $70^{\prime} \times 140^{\prime}$. (iii) $5 . \quad$ (iv) (a) $35^{\prime} \times 14^{\prime}$.
(b) $33^{\prime} \times 12^{\prime}$.
(v) 1' alround. (vi) Yes.
4. GENERAL :
(i) Crop lodged just after milk stage. (ii) Nil. (iii) Grain yield. (iv) (a) 1957 -contd. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) Nil. (vii) Expt. was conducted by Mycological section.
5. RESULTS:
(i) $2471 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $149 \mathrm{lb} . / \mathrm{ac}$. (b) 175 lb ./ac. (iii) Main effects of S and L are highly significant. Interaction is not significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	$\mathbf{L}_{\mathbf{0}}$	$\mathbf{L}_{\mathbf{1}}$	$\mathbf{L}_{\mathbf{2}}$	$\mathbf{L}_{\mathbf{3}}$	$\mathbf{L}_{\mathbf{4}}$	Mean
S_{1}	2310	2668	2585	2640	2613	2565
$\mathrm{~S}_{2}$	2239	2365	2503	2503	2393	2400
$\mathrm{~S}_{3}$	2305	2393	2393	2448	2448	2397
$\mathrm{~S}_{1}$	2393	2503	2585	2613	2519	2522
Mean	2311	2482	2516	2551	2493	2471

S.E. of difference of two

1. S marginal means $=42 \mathrm{lb} . / \mathrm{ac}$.
2. L marginal means $\quad=55 \mathrm{lb} / \mathrm{ac}$.
3. L means at the same leved of $S \quad=111 \mathrm{lb} . / \mathrm{ac}$.
4. S means at the same level of $L=108 \mathrm{lb}$./ac.

Crop:- Paddy (Sali),
 Site :- Govt. Paddy Farm, Titabar.

Ref :- As. 58(50).
Type :- 'D'.

Object :-To find out the suitable weedicide and its effective dose to control Paddy weeds.
i. BASAL CONDITIONS :
i (a' Nil. (b) Fallow. (c) Nil. (ii) (a) Clay loam. (b) N.A. (iii) 14.7.1958. (iv〉 (a) Ploughing and laddering. (b) Transplanting. (c) N.A. (d) $10^{*} \times 10^{\prime \prime}$. (e) 6. (v) N.A. (vi) Prosad bhog. (vii Unirrigated. (viii) Nil. (ix) N.A. (x) 28 and 29.7.1958.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 57 (49) above.
4. GENERAL :
(i) Crop lodged just after milk stage. (ii) Nil. (iii) Grain yield. (iv) (a) 1957 -contd. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) Nil. (vii) Expt. was conducted by Mycological section.
5. RESULTS :
(i) $2481 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $209 \mathrm{lb} . / \mathrm{ac}$. (b) $171 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effects of S and L are highly significant and interaction $S \times L$ is significant. (iv) Av. yield of grain in lb./ac.

	\mathbf{L}_{0}	\mathbf{L}_{1}	\mathbf{L}_{2}	$\mathbf{L}_{\mathbf{3}}$	$\mathbf{L}_{\mathbf{4}}$	Mean
S_{1}	2024	-2706	2816	3124	3058	2746
$\mathrm{~S}_{2}$	1892	2552	2310	2596	2530	2376
$\mathrm{~S}_{3}$	1980	2420	2244	2264	2354	2292
$\mathrm{~S}_{4}$	1980	2514	2574	2992	2486	2509
Mean	1969	2548	2486	2794	2607	2481

S.E. difference of two

1. S marginal means	$=59 \mathrm{lb} \cdot / \mathrm{ac}$.
2. L marginal means	$=54 \mathrm{lb} / \mathrm{ac}$.
3. L means at the same level of S	$=180 \mathrm{lb} / \mathrm{ac}$.
4. S means at the same level of L	$=113 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy (Sali).
Site :- Govt. Paddy Farm, Titabar.

Ref :- As. 59(53).
Type :- 'D'.

Object :-To study the effective doses of various weedicides to control Paddy weeds.

1. BASAL CONDITIONS:

> (i) (a) Nil. (b) Fallow. (c) Nil. (ii) (a) Clay loam. (b) N.A. (iii) $30.8 .1959 . \quad$ (iv) (a) Ploughing and harrowing. (b) Transplanted. (c) N.A. (d) $10^{\prime \prime} \times 10^{\prime}$. (e) 6. bhog. (v) Cowdung at $150 \mathrm{md} / \mathrm{ac}$. (vi) Unirrigated. Prosad
2. TREATMENTS :

All combinations of (1) and (2) +2 extra treatments
(1) 4 weedicides : $S_{1}=$ Fernoxone, $S_{2}=$ Dicotox, $S_{3}=$ Kathon and $S_{4}=$ Agroxone.
(2) 3 levels of weedicide : $L_{1}=8, L_{2}=16$ and $L_{3}=24$ ozs in 60 gallons/ac. of water.

2 extra treatments : $T_{1}=$ Control (no weeding) and $T_{2}=$ Local method of weeding.
3. DESIGN :
(i) R.B.D.
(ii) (a) 14 .
(b) $15^{\prime} \times 498^{\prime}$. '(iii) 5 .
(iv) (a) $36^{\prime} \times 15^{\prime}$.
(b) $33^{\prime} \times 12^{\prime}$.
(v) $1.5^{\prime} \times 1.5^{\prime}$. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1959-contd. (b) Yes. (c) Nil. (v) (a) and (b) N.A.
(vi) Nil. (vii) Expt. was conducted by Mycological section.

5. RESULTS:

(i) $2696 \mathrm{lb} . / \mathrm{ac}$. (ii) $138 \mathrm{lb} . / \mathrm{ac}$. (iii) All effects and interactions are highly significant. (iv) Av. yield of grain in lb. /ac.

	$T_{1}=2073 \mathrm{lb} . / \mathrm{ac}$ and $\mathrm{T}_{2}=2898 \mathrm{lb} . / \mathrm{ac}$.			
L_{1}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
$\mathrm{~L}_{2}$	2739	2585	2409	2530
$\mathrm{~L}_{3}$	2976	2618	2481	2986
3146	2673	2569	3058	2566
Mean	2954	2625	2486	2858
2861				

S.E. of S marginal mean	$=36 \mathrm{lb} . / \mathrm{ac}$.
S.E. of L marginal mean	$=31 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table	$=62 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Sali).
Site :- Rice Expt. Stn., Titabar.
Ref :- As. 59(48).
Type :- 'D'.
Object:-To find out the effect of pesticides on Paddy.

1. BASAL CONDITIONS :
(1) (a, No. (b) Paddy. (c) N.A. (ii) (a) Clay loam. (b) N.A. (iii) 22, 23.8.1959. (iv) (a) Ploughing and laddering. (b) Transplanting. (c) N.A. (d) $12^{\prime \prime} \times 10^{\prime \prime}$. (e) 4 . (v) Nil. (vi) Laudumra. (vii) Unirrigated. (viii) Nil. (ix) 30.99°. (x) 26 to 30.12.1959.

TREATMENTS :

1. Folidol at 30 c.c. in 30 gallons $/ \mathrm{ac}$. of water.
2. Endrex at 30 c.c. in 30 gallons/ac. of water.
3. Ekatox at 30 e.c. in 30 gallons/ac. of water.
4. Guesarol at 1 lb . in 30 gallons/ac. of water.
5. Hexidol at 1 lb . in 30 gallons/ac. of water.
6. Control.
7. DESIGN :
'i R.B.D. (ii; (a) 6 . (b) $134^{\prime} \times 69^{\prime}$. (iii) 5 . (iv) (a) $67^{\prime} \times 23^{\prime}$. (b) $66^{\prime} \times 22^{\prime}$. (v) $2^{\prime} \times 0.5^{\prime}$. (vi) Yes.
8. GENERAL :
(i Fair. (ii) Attack of stem-borer, case-worm, grasshopper, leafhopper and bugs. Control measures as per treatments. (iii) Grain yield. (iv) (a) 1958-contd. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) Nil. (vii) Expt. was conducted by Entomological section.
9. RESLLTS :
(i) 2557 lb ./ac. (ii) 62 lb .'ac. (iii) Treatment differences are highly significant. (iv) Av. yield of grain in lb./ac.

Treatment	1	2	3	4	5	6
Av. yield	2922	2688	2772	2334	2532	2094
	S.E./mean	$=$	$28 \mathrm{lb} . / \mathrm{ac}$.			

Crop :- Paddy (Sali).	Ref $:-$ As. $58(51)$.
Site :- Rice Expt. Stn., Titabar.	Type :- ‘D'.

Object :-To find out the effect of the pesticides on Paddy.

1. BASAL CONDITIONS :
(i, 'a) No. (b' Paddy. (c) N.A. (ii) (a) Clay soil. (b) N.A. (iii) 17 and 18.8.1958. (iv) (a) Ploughing and laddering. (b) Transplanting. (c) N.A. (d) $12^{\prime \prime} \times 10^{\prime \prime}$. (e) 4 . (v) Nil. 'vi) Laudumra. (vii) Unirrigated. (viii) Nil. (ix) $17.63^{\prime \prime}$. (x) $23,24.12 .19 .58$.
2. TREATMENTS :
3. Guesarol at 1 lb . in 300 lb ./ac. of water.
4. Gammexane at 1 lb . in 300 lb ./ac. of water.
5. Hexidol at 1 lb . in 300 lb ./ac. of water.
6. Folidol at $30 \mathrm{c.c}$. in $300 \mathrm{lb} . / \mathrm{ac}$. of water.
7. Endrex at $30 \mathrm{c.c}$. in 300 lb ./ac. of water.
8. Control.
9. DESIGN :
(i) R.B.D.
(ii) (a) 6 .
(b) $134^{\prime} \times 69^{\prime}$.
(iii) 5. (iv)
(a) $67^{\prime} \times 23^{\prime}$.
(b) $65^{\prime} \times 22^{\prime}$. (v) N.A. (vi) Yes.
10. GENERAL
(i) Fair. (ii) Stem-borer, case-worm, grass-hopper, leaf-hopper and rice bug are generally noticed. (iii) Grain yield. (iv) (a) 1958 -contd. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) Nil. (vii) Expt. was conducted by Entomological section.
11. RESULTS •

S.E./mean $=34 \mathrm{lb} . / \mathrm{ac}$.
Crop :- Paddy (Ahu).
Centre :- Jorlhat (c.f.).

Object :- To find out the most economic and effective way of controlling weeds associated with Ahu Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Fallow. (c) Nil. (ii) Sandy loam. (iii) Cowdung at $200 \mathrm{mds} / \mathrm{ac}$. (iv) Rangadoria. (v) (a) Ploughing and laddering. (b) Broadcasting. (c) N.A. (d) and (e) -. (vi) 29.3.1958. (vii) Unirrigated. (viii) and (ix) N.A. (x) 9 to 11.7.1958.
2. TREATMENTS :

Same as in expt. no. $57(49)$ on page $52 . \quad 28 \mathrm{El}$ 10gl
3. DESIGN : 共 lin nal mom
(i) Split-plot. 4 main-plots/block; 5 sub-plots/main-plot ; 5 replications. (ii) 5 blocks were selected from the agreable cultivators' in the same locality. (iii) (a) $13^{\prime} \times 11^{\prime}$. (b) $11^{\prime} \times 9^{\prime}$. (iv) Yes. nomintongen 2 10. 3.2
4. GENERAL : nemg :midarm 1 i. . 3.2
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) to (c) N.A. (vi) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1261 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) 242 lb ./ac. (b) 209 lb ./ac. (iii) Main effects of S and L are highly significant. Interaction $S \times L$ is significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

S.E. of difference of two.

1. S marginal means $\quad=68 \mathrm{lb} . / \mathrm{ac} . \quad 2 \mathrm{TAZMT:马A} \mathrm{~A}$

2. S means at the same level of $L \quad=137 \mathrm{lb} . / \mathrm{ac}$.
```
Crop :- Paddy (Ahu). Ref :- As. 59(53a).
Centre :- Jorhat (c.f.).
Type:- `D'.
```

Object :-To find out the most economic and effective way of controlling weeds associated with Ahu Paddy.

1. BASAL CONDITIONS :
(i) (a) and (b) Potato. (c) Cowdung at $200 \mathrm{mds} / \mathrm{ac}$. (ii) Sandy loam. (iii) Cowdung at $20 \mathrm{~J} \mathrm{mds} / \mathrm{ac}$. (iv) Rangadoria. (v) (a) Ploughing and laddering. (b‘ Broadcasting. (c) N.A. (d) and (e) - (vi) 25.3.1959. (vii) Unirrigated. (viii) and (ix) N.A. (x) 5 and 6.6.1959.
2. TREATMENTS :

Same as in expt. no. 59(53) on page 53.
3. DESIGN :
(i) N.A. (ii) 5 blccks were selected from the same village. (iii) (a) $13^{\prime} \times 11^{\prime}$. (b) $11^{\prime} \times 9^{\prime}$. (iv) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) to (c) 1959-contd. (v) (a) and (b) N.A. 'vi) and 'vii) Nil.

5. RESULTS :

(i) $1411 \mathrm{lb} . / \mathrm{ac}$. (ii) $187 \mathrm{lb} . / \mathrm{ac}$. (iii) Effects of $\mathrm{S}, \mathrm{L}, \mathrm{T}_{1}$ vs T_{2} and ' T is others' are highly significant. Interaction $\mathrm{S} \times \mathrm{L}$ is not significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

$$
\mathrm{T}_{1}=704 \mathrm{lb} . / \mathrm{ac} . \text { and } \mathrm{T}_{2}=1430 \mathrm{lb} . / \mathrm{ac} .
$$

	S_{1}	S_{2}	S_{3}	S_{4}	Mean
L_{1}	1496	990	1342	1078	1226
L_{2}	1738	1165	1672	1474	1512
L_{3}	1804	1386	1782	1694	1666
Mean	1679	1181	1599	1415	1468
S.E. of S marginal mean S.E. of L marginal mean S.E. of body of table				$\begin{aligned} & =48 \mathrm{lb} \cdot / \mathrm{ac} . \\ & =42 \mathrm{lb} \cdot / \mathrm{ac} . \\ & =84 \mathrm{lb} \cdot / \mathrm{ac} . \end{aligned}$	

```
Crop :- Maize (Kharif).
Ref :- As. 59(34).
Site :- Govt. Agri. Farm, Jorhat.
Type :- 'M'
```

Object :-To study the effect of different fertilizers on Maize.

1. BASAL CONDITIONS :
(i) (a) N.A. 'b) Cabbage. (c) A/S at 50,100 and $150 \mathrm{lb} . / \mathrm{ac}$. Cowdung at $150 \mathrm{md} . / \mathrm{ac}$. (ii) (a) Old alluvial acidic soil. (b) N.A. (iii) 6.4.1959. (iv) (a) 5 ploughings followed by laddering. (b) Line sowing. (c) N.A. (d) $18^{\prime \prime} \times 9^{\prime \prime}$. (e) 1 . (v) 20 lb ./ac. of N as cowdung broadcast on 4.4.1959. (vi) Local. (vii) Unirrigated. (viii) Weeding. (ix) $4.16^{\prime \prime}$. (x) 31.8 .1959.
2. TREATMENTS :

4 sources of N at 40 lb ./ac. : $\mathrm{S}_{0}=$ No manure (control.) ; $\mathrm{S}_{1}=\mathrm{A} / \mathrm{S}, \mathrm{S}_{2}=\mathrm{A} / \mathrm{C}$ and $\mathrm{S}_{3}=$ Urea.
Super at 40 lb ./ac. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ applied to treatments: $\mathrm{S}_{\mathbf{1}}, \mathrm{S}_{\mathbf{2}}$ and $\mathrm{S}_{\mathbf{3}}$.
3. DESIGN:
(i) R.B.D.
(ii) (a) 4. (b) $48^{\prime} \times 25^{\prime}$
(iii) 3
(iv) (a) and (b)
(b) $25^{\prime} \times 12^{\prime}$.
(v) Nil. (vi’ Yes.
4. GENERAL :
(i) Poor. (ii) Nil. (iii) Grain yield. (iv) (a) 1959—contd. (b) Yes. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nill.

5. RESULTS:

(i) $675 \mathrm{lb} . / \mathrm{ac}$. (ii) $262 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	S_{0}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{\mathbf{2}}$	$\mathrm{S}_{\mathbf{3}}$
Av. yield	436	781	714	769
	S.E./mean	$=$	$151 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Maize.
Ref :- As. 56(16).
Site :- Expt. Res. Stn., Upper Shillong.
Type:- ' \mathbf{M} '.

Object:-To find out the effect of N and P on Maize.

1. BASAL CONDITIONS :
(i) (a) Potato-Maize + Soyabean-Millet-Fallow. (b) Potato. (c) F.Y.M. at $250 \mathrm{mds} / \mathrm{ac}$. and mustard oilcake at $10 \mathrm{mds} / \mathrm{ac}$. (ii) Sandy loam. (b) N.A. (iii) 11.5 .1956 . (iv) (a) Two ploughings with turn-wrest plough followed by laddering and harrowing. (b) Dibbling. (c) N.A. (d) $3^{\prime} \times 3^{\prime}$. (e) 3 seeds $/$ hill. (v) $100 \mathrm{md} . / \mathrm{ac}$. of F.Y.M. applied in hills at the time of sowing. (vi) N.A. (vii) Unirrigated. (viii) Two intercultures. (ix) $131.12^{\prime \prime}$. (x) 13.11.1956.
2. TREATMENTS :
3. Control.
4. A / S at $375 \mathrm{lb} . / \mathrm{ac}$.
5. A/S at $375 \mathrm{lb} . / \mathrm{ac} .+$ Super at 225 lb. ./ac.

Fertilizers applied at sowing.
3. DESIGN :
(i) R.B.D. (ii) (a) 3 . (b) $16.5^{\prime} \times 102^{\prime}$. (iii) 4 . (iv) (a) and (b) $33^{\prime} \times 16 \frac{1}{2}^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Satisfactory; no lodging. (ii) Nil. (iii) Yield of maize. (iv) (a) 1956 -contd. (b) No. (c) Nil. (v)
(a) and (b) N.A. (vi) and $\geqq i i) ~ N i l . ~$
5. RESULTS :
(i) $346.3 \mathrm{lb} . / \mathrm{ac}$. (ii) 121.1 lb ./ac. (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb ./ac.

Treatment	1	2	3
Av. yield	282.9	411.5	344.6
	S.E./mean	$=$	$60.54 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Maize.
 Site :- Expt. Res. Stn., Upper Shillong.

Ref :- As. 57(4).
Type :- ' M^{\prime} '.

Object:- To find out the effect of N and P on Maize.

1. BASAL CONDITIONS :
(i) (a) Potato-Maize+Soyabean-Millets-Fallow. (b) Fallow. (c) Nil. (ii) (a) Sandy loam. (b) N.A. (iii) 18.5.1957. (iv) (a) Two ploughings with turn-wrest plough followed by laddering and harrowing. (b) Dibbling. (c) N.A. (d) $3^{\prime} \times 3^{\prime}$. (e) 3 . (v) 200 md ./ac. of F.Y.M. applied in hills at sowing. (vi) South African "Pearl" (late). (vii) Unirrigated. (viii) Two intercultures. (ix) 57.57 ". (x) 7.11 .1957.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 5616 ; on page 57.
5. RESULTS :
(i) $175.7 \mathrm{lb} . / \mathrm{ac}$. (ii) 405.9 lb ./ac. (iii) Treatment differences are not significant. (iv) Av. yield of grain $\mathrm{n} \mathrm{lb} . / \mathrm{ac}$.

Treatment	1	2	3
Av. yield	46.3	82.3	398.6
	S.E./mean	$=$	$203.0 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Maize.

Site :- Expt. Res. Stn., Upper Shillong.
Ref:- As. 59(8).
Type :- ‘M’.

Object:-To find out the effect of N and P on Maize.

1. BASAL CONDITIONS :
(i) (a: Potato-Maize + Soyabean - Millet-Fallow. (b) Potato. (c) F.Y.M. at 200 mds ac., oikake at $5 \mathrm{mds} / \mathrm{ac}$. and mixed fertilizer at 200 lb ./ac. (ii) (a) Sandy loam. (b) N.A. (iii) 19.6.1959. (iv', (a) Plc ughing and pulverising. (b) Planting in furrows. (c) 15 sr ./ac. (d) $2^{\prime} \times 1^{\prime}$. (e) 2. (v) F.Y.M. at $200 \mathrm{mds} / \mathrm{ac}$. apphed at sowing. (vi) Local white-round (medium). (vii) Unirrigated. (viii) Earthing up once (ix) $35 \cdot 16^{\prime \prime}$ (x) 12.11.1959.
2. TREATMENTS :

Same as in expt. no. $56!(16)$ on page 57.
3. DESIGN :
(i) R.B.D. (ii) 〈a) 3. (b) N.A. (iii) 4. (iv) (a) and (b) $20^{\prime} \times 16^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Poor. (ii, No. (iii) Grain yield. (iv) (a) N.A. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi, and (vii) Nil.
5. RESULTS :
(i) $323.0 \mathrm{lb} . / \mathrm{ac}$. (ii) $207.4 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv’ Av. yield of grain in lb. $/ \mathrm{ac}$.

Treatment	1	2	3
Av. yield	153.0	442.0	374.0
	S.E./mean	-	$103.7 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Maize.
 Site :- Expt. Res. Stn., Upper Shillong.

Object :-To find out the effect of different nitrogenous fertilizers on Maize.

1. BASAL CONDITIONS :

(i) (a) Potato-Maize+Soyabean-Millet-Fallow. (b) Potato. (c) F.Y.M. at $250 \mathrm{mds} / \mathrm{ac}$. and mustard oilcake at $10 \mathrm{md} . / \mathrm{ac}$. (ii) (a) Sandy loam. (b) N.A. (iii) 11, 12.5 .1955 . (iv) (a) Two ploughings with turn-wrest plough followed by laddering and harrowing. (b; Dibbling. (c) N.A. (d) $3^{\prime} \times 3^{\prime}$, e; 3. (v) $100 \mathrm{md} . / a c$. of F.Y.M. applied at sowing. (vi) Local Khasi (medium). (vii) Unirrigated. (viii) 2 intercultures. (ix) 95.87". (x) 4.11.1955.
2. TREATMENTS :

1. Control.
2. $A, S / N$ at $300 \mathrm{lb} . ; \mathrm{ac}$.
3. Urea at $175 \mathrm{lb} . j \mathrm{ac}$.

Half dose applied at sowing and half at earthing up.
3. DESIGN and 4. GENERAL:

Same as in expt. no. 56(16) on page 57.
5. RESULTS :
(i) $857.3 \mathrm{lb} . / \mathrm{ac}$. (ii) $342.2 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb ./ac.

Treatment	1	2	3
Av. yield	833.3	1069.9	668.7

$$
\text { S.E. } / \text { mean }=171.1 \mathrm{lb} . / \mathrm{ac} .
$$

Grop :- Maize.
 Site :- Expt. Res. Stn., Upper Shillong,

Ref :- As. 56(19).
 Type :- ' \mathbf{M}^{\prime}.

Object:-To find out the effect of different nitrogenous fertilizers on Maize.

1. BASAL CONDITIONS:
(i) (a) Potato-Maize + Soyabean-Millet-Fallow. (b) Potato. (c) F.Y.M. at $250 \mathrm{mds} / \mathrm{ac}$. and mustard oilcake at $10 \mathrm{md} . / \mathrm{ac}$. (ii) (a) Sandy loam. (b) N.A. (iii) 11.5 .1956 . (iv) (a) Two ploughings with turn"wrest plough followed by laddering and harrowing. (b) Dibbling. (c) N.A. (d) $3^{\prime} \times 3^{\prime}$. (e) 3 . (v) Nil. (vi) Local Khasi (medium). (vii) Unirrigated. (viii) Two intercultures. (ix) 131.12". (x) 13.11.1956.
2. TREATMENTS :
3. A / S at $375 \mathrm{lb} . / \mathrm{ac}$.
4. $\mathrm{A} / \mathrm{S} / \mathrm{N}$ at $300 \mathrm{lb} . / \mathrm{ac}$.
5. Urea at $175 \mathrm{lb} . / \mathrm{ac}$.

Fertilizers were applied at the time of planting.
3. DESIGN and 4. GENERAL:

Same as in expt. no. $55(16)$ on page 58.
5. RESULTS :
(i) $112.3 \mathrm{lb} / / \mathrm{ac}$. (ii) 67.4 lb ./ac. (iii) Treatment differences are not significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	1	2	3
Av. yield	90.0	90.0	156.9
	S.E./mean $=$	$33.68 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Maize.
 Site :- Expt. Res. Stn., Upper Shillong.

Ref:- As. 56(18).
 Type :- 'M'.

Object:-To find out the effect of N and P on Maize.

1. BASAL CONDITIONS:
(i) (a) Potato-Maize+Soyabean-Millet-Fallow. (b) Potato. (c) F.Y.M. at $250 \mathrm{mds} / \mathrm{ac}$. and mustard oilcake at $10 \mathrm{mds} / \mathrm{ac}$. (ii) (a) Sandy loam. (b) N.A. (iii) 11.5.1956. (iv) (a) Two ploughings with turn-wrest plough followed by laddering and harrowing. (b) Dibbling. (c) N.A. (d) $3^{\prime} \times 3^{\prime}$. (e) 3. (v) $100 \mathrm{md} . / \mathrm{ac}$. of F.Y.M. applied at sowing. (vi) Local Khasi (medium). (vii) Unirrigated. (viii) Twe intercultures. (ix) 131.12". (x) 13.11.1956.
2. TREATMENTS:
3. Control.
4. Urea at $175 \mathrm{lb} . / \mathrm{ac}$.
5. Urea at 175 lb ./ac. + Super at 225 lb ./ac.

Fertilizers were applied at sowing.
3. DESIGN and 4. GENERAL :

Same as in expt. no. 56(16) on page 57.
5. RESULTS :
(i) $190.3 \mathrm{lb} . / \mathrm{ac}$. (ii) 82.37 lb ./ac. (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb. $/ \mathrm{ac}$.

Treatment	1	2	3
Av. yield	174.9	231.5	164.6
	S.E. $/$ mean	$=$	$41.18 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Maize.	Ref :- As. 57(5).
Site :- Expt. Res. Stn., Upper Shillong.	Type :- 'M'.

Crop :- Maize.
Type :- ' \mathbf{M} '.
Object:-To find out the effect of N and P on Maize.

1. BASAL CONDITIONS:
(i), (a) Potato-Maize+Soyabean-Millet-Fallow. (b) Fallow. (c) Nil. (ii) (a) Sandy loam. (b) N.A.
(iii) 18.5.1957. (iv) (a) Two ploughings with turn-wrest plough followed by laddering and harrowing etc. (b) Hill system. (c) N.A. (d) $3^{\prime} \times 3^{\prime}$. (e) 3 seeds/hill. (v) $200 \mathrm{md} . / \mathrm{ac}$. of F.Y.M. applied at sowing. (vi) South African "Pearl" 'late). (vii' U'nirrigated. (viii) Two intercultures. (ix) 57.57". (x) 7.11.1957.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. $56(18)$ on page 59.
5. RESULTS:
(i) 197.2 lb ./ac. (ii) 84.72 lb . ac. (iii) Treatment diffrences are significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	1	2	3
Av. yield	133.7	108.0	349.8

S.E./mean $=42.36 \mathrm{Ib} . / \mathrm{ac}$.
Crop:- Maize.
Ref :- As. 59(9).
Site :- Expt. Res. Stn., Upper Shillong.
Type :- ' \mathbf{M} ’.

Object :-To study the effect of N and P on Maize.

1. BASAL CONDITIONS :
(i) (a) Potato-Maize + Soyabean-Millet-Fallow. (b) Potato. (c) F.Y.M. at $203 \mathrm{md} . / \mathrm{ac}$. and mixed fertilizer at $200 \mathrm{lb} . / \mathrm{ac}$. (ii) ' a ', Sandy loam. (b) N.A. (iii) 20.6.1959. (iv) (a) Ploughing and pulverising. (b) Planting in furrows. (c) $15 \mathrm{sr} . / \mathrm{ac}$. (d) $2^{\prime} \times 1^{\prime}$. (e) 2. (v) F.Y.M. at $200 \mathrm{md} . / \mathrm{ac}$. applied at the time of sowing. (vi) Local white-round (medium). (vii) Unirrigated. (viii) Earthing up once. (ix) 35.46". (x) 12.11.1959.

2. TREATMENTS :

Same as in expt no. 56 (18) on page 59.
Fertilizers were applied at the time of earthing up.
3. DESIGN and 4. GENERAL :

Same as in expt. no. 59 (8) on page 58.
5. RESULTS:
(i) $215.3 \mathrm{lb} . / \mathrm{ac}$. (ii) 89.18 lb ./ac. (iii) Treatment differences are not significant. (iv) Av. yield in grain lb./ac.

Treatment	1	2	3
Av. yield	238	238	170

S.E. $/$ mean $=44.59 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Maize. Ref :- As. 55(15).
 Site :- Expt. Res. Stn., Upper Shillong.
 Type :- ‘'M'.

Object :-To find out the effect of different nitrogenous fertilizers on Maize.

1. BASAL CONDITIOṄS :

Same as in expt. no. 55 (16) on page 58.
2. TREATMENTS :
1.' Control.
2. C / N at $500 \mathrm{lb} . / \mathrm{ac}$.
3. $\mathrm{A} / \mathrm{S} / \mathrm{N}$ at $300 \mathrm{lb} . / \mathrm{ac}$.

Half dose of fertilizers was applied at sowing and half dose at the first earthing up.
3. DESIGN and 4. GENERAL:

Same as in expt. 56(16) on page 57.
5. RESULTS :
(i) 836.7 lb ./ac. (ii) 242.2 lb ./ac. (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb./ac.

Treatment	1	2	3
Av. yield	720	792	997
	S.E/mean $=$	$121.1 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Maize.
 Site :- Expt. Res. Stn., Upper Shillong.

Ref:- As. 54(9).
Type :- ‘ \mathbf{M}^{\prime}.
Object :-To compare the effect of $\mathbf{C / N}$ and A / S on Maize.

1. BASAL CONDITIONS :
(i) (a) Potato-Maize+Soyabean-Millet-Fallow. (b) Potato. (c) F.Y.M. at 200 md./ac. and mustard oilcake at $10 \mathrm{md} . / \mathrm{ac}$. (ii) (a) Sandy loam. (b) N.A. (iii) 28.4.1954. (iv) (a) Two ploughings with turnwrest plough followed by laddering and harrowing. (b) Dibbling. (c) N.A. (d) $3^{\prime} \times 3^{\prime}$. (e) 3 seeds/hill. (v) Basal dressing of $200 \mathrm{md} . / \mathrm{ac}$. of F.Y.M. and $5 \mathrm{md} / \mathrm{ac}$. of oilcake. (vi) South African 'Pearl' (late). (vii) Unirrigated. (viii) 2 intercultures. (ix) $103.34^{\prime \prime}$. (x) 19.11.1954.
2. TREATMENTS:
3. Control.
4. C / N at $125 \mathrm{ib} . / \mathrm{ac}$.
5. A/S at $100 \mathrm{lb} . / \mathrm{ac}$.

Fertilizers were applied at the time of 1 st interculturing.
3. DESIGN :'
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 2. (iv) (a) and (b) $33^{\prime} \times 33^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) No lodging.
(ii) Nil. (iii) Grain
yield.
(iv) (a) and (b) No.
(c) Nil
il. (v)
(a) and
(b) N.A.
(vi) and (vii) Nil.
5. RESULTS :

Crop :- Maize.

Ref :- As. 56(14).
Site :- Expt. Res. Stn., Upper Shillong.
Type :- ' \mathbf{M} '.
Object :-To find out the effect of different nitrogenous fertilizers on Maize.

1. BASAL CONDITIONS:
(i) (a; Potato-Maize + Soyabean-Millet—Fallow. (b) Potato. (c) F.Y.M. at $250 \mathrm{mds} / \mathrm{ac}$. and mustard oilcake at $10 \mathrm{mds} / \mathrm{ac}$. (ii) (a) Sandy loam. (b) N.A. (iii) $11.5 .1956 / \mathrm{N}$.A. (iv) (a) Two ploughings with turnwrest plough followed by laddering and harrowing. (b) Dibbling. (c) N.A. (d) 3' $\times 3^{\prime}$. (e) 3. (v) $100 \mathrm{md} . / \mathrm{ac}$. of F.Y.M. was applied at the time of sowing. (vi) Local Khasi (medium). (vii; Unirrigated. (viii) 2 intercultures. (ix) 131.1*. (x) 13.11.1956.
2. TREATMENTS :
3. Control.
4. C / N at $475 \mathrm{lb} . / \mathrm{ac}$.
5. A / S at $375 \mathrm{lb} . / \mathrm{ac}$.

Fertilizers were applied at the time of sowing.
3. DESIGN and 4. GENERAL :

Same as in expt. no. $56(16)$ on page 57.
5. RESULTS :
(i) $138.0 \mathrm{lb} . / \mathrm{ac}$. (ii) $87.14 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of giain in $\mathrm{lb} . / \mathrm{ac}$.

Trestment	1	2	3
Av. yield	118.3	169.7	126.0
	S.E./mean $=$	$43.57 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Maize.	Ref :- As. 55(17).
Site :- Expt. Res. Stn., Upper Shillong.	Type :- ' ${ }^{\mathbf{M} \text { '. }}$.

Object :-To find out the effect of N and P on Maize.

1. BASAL CONDITIONS:

Same as in Expt. no. 55 (16; on page 58.
2. TREATMENTS :

1. Control.
2. $\mathrm{A} / \mathrm{S} / \mathrm{N}$ at $300 \mathrm{lb} . / \mathrm{ac}$.
3. $\mathrm{A}^{\prime} \mathrm{S} / \mathrm{N}$ at $300 \mathrm{lb} . / \mathrm{ac} .+375 \mathrm{lb}$./ac. of Super.

Half dose of fertilizers was applied at sowing and the other half at first interculture.
3. DESIGN and 4. GENERAL:

Same as in expt. no. 56 (16) on page 57.
5. RESULTS:
(i) 1231 lb ./ac. (ii) 280.5 lb ./ac. (iii) Treatment differences are not significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	1	2	3
Av. yield	946	1255	1492
	S.E. mean $=$	$140.2 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Maize.
Site :- Expt. Res. Stn., Upper Shillong.

Ref:- As. 56 (15).

Object :-To study the effect of N and P on Maize.

1. BASAL CONDITIONS :
(i) (a) Potato-Maize + Soyabean-Millet-Fallow. (b) Potato. (c) F.Y.M. at $250 \mathrm{mds} / \mathrm{acc}$. and mustard oilcake at $10 \mathrm{mds} / \mathrm{ac}$. (ii) S andy loam. (b) N.A. (iii) $11.5 .1956 / \mathrm{N} . \mathrm{A}$. (iv) (a) Two ploughings with turnwrest plough followed by laddering and harrowing. (b) Dibbling. (c) N.A. (d) $3^{\prime} \times 3^{\prime}$. (e) 3 . (v) $100 \mathrm{md} . / a \mathrm{c}$. of F.Y.M. was given at sowing. (vi) Local Khasi (medium). (vii) Unirrigated, (viii) Two intercultures. (ix) 131.12". (x) 13.11.1956.
2. TREATMENTS :
3. Control.
4. $\mathrm{A} / \mathrm{S} / \mathrm{N}$ at $300 \mathrm{lb} . / \mathrm{ac}$.
5. $\mathrm{A} / \mathrm{S} / \mathrm{N}$ at $300 \mathrm{lb} . / \mathrm{ac}$. + Super at 225 lb ./ac.

Fertilizers were applied at sowing.
3. DESIGN and 4. GFNERAL :

Same as in expt. no. 56 (16) on page 57.
5. RESULTS :

Crop :- Maize.	Ref :- As. $57(8)$.
Site :- Expt. Res. Stn., Upper Shillong.	Type :- ' \mathbb{M}^{\prime}.

Object :-To find out the effect of \mathbf{N} and \mathbf{P} on Maize.

1. BASAL CONDITIONS :
(i) (a) Potato-Maize+Soyabean-Millet-Fallow. (b) Fallow. (c) Nil. (ii) (a) Sandy loam. (b) N.A.
(iii) $18.5 \cdot 1957 /$ N.A. (iv) (a) Two ploughings with turn-wrest plough, followed by laddering, harrowing, etc. (b) Dibbling. (c) N.A. (d) $3^{\prime} \times 3^{\prime}$. (e) 3. (v) 200 md ./ac. of F.Y.M. applied at sowing. (vi) South African 'Pearl' (late). (vii) Unirrigated. (viii) Two intercultures. (ix) 57.57 '. (x) 7.11.1957.
2. TREATMENTS

Same as in expt. no. 56(15) on page 62.
3. DESIGN and 4. GENERAL :

Same as in expt. no. $56(16)$ on page 57.
s. RESULTS :
(i) $1029 \mathrm{Ib} . / \mathrm{ac}$. (ii) $270.2 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb./ac.

Treatment	1	2	3
	1152	741	1193

S.E. $/$ mean $=135.1 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Maize.
 Site :- Expt. Res. Stm., Upper Shillong.

Ref :- As. 56(17).
Type :- ' \mathbf{M}^{\prime}.
Object :-To find out the effect of mixed fertilizers on Maize.

1. BASAL CONDITIONS :

Same as in expt. no. 56(15) on page 62.
2. TREATMENTS:

1. Control.
2. Mixed fertilizer at $625 \mathrm{lb} . \mathrm{ac}$.
3. Mixed fertilizer at 940 lb ./ac.
4. Mixed fertilizer at 625 lb ./ac. + Mur. Pct. at 200 lb ./ac.
5. DESIGN:
i, R.B.D.
(ii) (a; 4 .
(b) $135^{\prime} \times 16.5^{\prime}$.
(iii) 4
(iv) (a) and (b) $33^{\prime} \times 16.5^{\prime}$.
(v) Nil. (vi) Yes.
6. GENERAL :

Same as in expt. no. 57 , 8 ; on page 63.
5. RESULTS :
(i) 187.7 lb /ac. (ii) $103.9 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield o : grain in lb.jac.

Treatment	1	2	3	4
Av. yield	133.7	198.0	187.7	231.5

S.E./mean $=51.9 \mathrm{lb} .{ }^{\prime} \mathrm{ac}$.

Crop :- Maize.
Site :- Expt. Res. Stn., Upper Shillong.

Ref :- As. 57(6).
Type :- ' $\mathbf{~ M}$ '.

Object:-To study the effect of mixed fertilizers combined with Mur. Pot. on Maize.

1. BASAL CONDITIONS :

Same as in expt. no 57 ; 8 ; on page 63.

2. TREATMENTS:

1. Control.
2. Mixed fertilizer at 625 lb ./ac.
3. Mixed fertilizer at $940 \mathrm{lb} . / \mathrm{ac}$.
4. Mixed fertilizer at $625 \mathrm{lb} / \mathrm{ac} .+$ Mur. Pot. at $200 \mathrm{lb} . / \mathrm{ac}$.

Fertilizers applied at the time of sowing.
3. DESIGN to 4. GENERAL:

Same as in expt. no. 56:17) on page 63.
5, RESULTS:
(i) $1728 \mathrm{lb} . / \mathrm{ac}$, iif; 720.4 lb ./ac. (iii) Treatment differences are not significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	1	2	3	4
Av. yield	1811	2016	1811	1276
	S.E./mean	$=$	$360.2 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Maize.	Ref :- As. 59(10).
Site :- Expt. Res. Stn., Upper Shillong.	Type :- 'M'

Site :- Expt. Res. Stn., Upper Shillong.
Type :- ' M '
Object :-To study the effect of mixed fertilizer and Mur. Pot. on the yield of Maize.

1. BASAL CONDITIONS :
(i) (a) Potato-Maize+Soyabean-Millet-Fallow. (b) Potato. (c) F.Y.M. at $200 \mathrm{md} . / \mathrm{ac}$. and mixed fertilizer at 200 lb ./ac. (ii) (a) Sandy loam. (b) N.A. (iii) 20.6.1959. (iv) (a) Ploughing and pulverising. (b) Furrow planting. (c; $15 \mathrm{srs} / \mathrm{ac}$. (d) $2^{\prime} \times 1^{\prime}$ (e) $2 . \quad$ (v) F.Y.M. at $200 \mathrm{mds} / \mathrm{ac}$. applied at time of sowing. (vi) Local, white round 'medium). (vii) Unirrigated. (viii) Earthing up once and weeding. (ix) $35.46^{\prime \prime}$. (x) 12.11. 1959.

2. TREATMENTS :

1. Control.
2. Mixed fertilizer at 625 lb ./ac.
3. Mixed fertilizer at $940 \mathrm{lb} . / \mathrm{ac}$.
4. Mixed fertilizer at $625 \mathrm{lb} . / \mathrm{ac} .+$ Mur. Pot. at 200 lb ./ac.

Fertilizers were applied at the time of earthing up.
3. DESIGN :
(i) R.B.D. (ii) (a) 4 . (b) N.A. (iii) 4 . (iv) (a) and (b) $20^{\prime} \times 16^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Poor. (ii) No. (iii) Grain yield. (iv) (a) 1958-1959 (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and(vii) Nil.
5. RESULTS :
(i) $187 \mathrm{lb} . / \mathrm{ac}$. (ii) $68 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	1	2	3	4
Av. yield	119	187	170	272
	S.E. $/$ mean	$=$	$34.0 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Maize.
 Site :- Expt. Res. Stn., Upper Shillong.

Ref :- As. $57(9)$.
Type :- ${ }^{\prime} \mathbf{M}^{\prime}$.

Object :-To find out the effect of different nitrogenous fertilizers on Maize.

1. BASAL CONDITIONS :
(i) (a) Potato-Maize + Soyabean-Millet-Fallow. (b) Fallow. (c) Nil. (ii) (a) Sandy loam. (b) N.A.
(iii) 18.5.1957. (iv) (a) Two ploughings with turn-wrest plough followed by laddering and harrowing. (b) Dibbling. (c) N.A. (d) $3^{\prime} \times 3^{\prime}$. (e) 3 seeds/hill. (v) $200 \mathrm{md} . / \mathrm{ac}$. of F.Y.M. applied at the time of sowing. (vi) South African Pearl (late). (vii) Unirrigated. (viii) Two intercultures. (ix) 55.52". (x) 7.11.1957.
2. TREATMENTS :
3. Control.
4. C / N at $475 \mathrm{lb} . / \mathrm{ac}$.
5. Nitrolime at $475 \mathrm{at} \mathrm{lb} . / \mathrm{ac}$.
6. A/S at $375 \mathrm{lb} . / \mathrm{ac}$.

Fertilizers were applied in bills planting.
3. DESIGN and 4. GENERAL:

Same as in expt. no. 56(17) on page 63.
5. RESULTS :

Grop :- Maize.

- Site :- Expt. Res. Stn., Upper Shillong.

Ref :- As. 57(7).
Type :- 'M'.

- Object :-To find the effect of different nitrogenous fertilizers on Maize without B.D. of F.Y.M.

1. BASAL CONDITIONS :
(i) (a) Potato-Maize+Soyabean-Millet-Fallow. (b) Fallow. (c) Nil. (ii) (a) Sandy loam. (b) N.A. (iii) 18.5.1957. (iv) (a) Two ploughings with turn-wrest plough followed by laddering, harrowing etc. (b) Dibbling. (c) N.A. (d) $3^{\prime} \times 3^{\prime}$. (e) 3 seeds/hill. (v) Nil. (vi) South African Pearl. (late). (vii) Unirrigated. (viii) Two intercultures. (ix) 57.57^{*}. (x) 7.11.1957.
2. TREATMENTS:
3. A / S at $600 \mathrm{lb} . / \mathrm{ac}$.
4. $\mathrm{A} / \mathrm{S} / \mathrm{N}$ at $470 \mathrm{lb} . / \mathrm{ac}$.
5. Urea at $275 \mathrm{lb} . / \mathrm{ac}$.
6. Nitrolime at 750 lb ./ac.

Fertilizers were applied at the time of sowing.
3. DESIGN and 4. GENERAL:

Same as in expt. no. $56(17)$ on page 63.
5. RESULTS :
(i) 74.58 lb ./ac. (ii) 88.59 lb ./ac. (iii) Treatment differences are not significant. (iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	1	2	3	4
Av. yield	41.2	33.4	174.9	48.9
	S.E./mean	$=$	$44.29 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Maize.	Ref :- As. 55(18).
Site :- Expt. Res. Stn., Upper. Shillong.	Type :- ‘M'.

Object:-To find out the effect of mixed fertilizers on the yield of Maize.

1. BASAL CONDITIONS :
i. (a) Potato-Maize + Soyabean-Millet-Fallow. (b) Potato. (c) F.Y.M. at $250 \mathrm{mds} / \mathrm{ac}$. and mustard oi:cake at 10 mds 'ac. (ii) (a) Sandy loam. (b) N.A. (iii) 11, 12.5.1955. (iv) (a) Two ploughings with turn-wrest plough followed by laddering and harrowing, (b) Dibbling. (c) N.A. 'd, $3^{\prime} \times 3^{\prime}$. (e) 3 seeds/hill. (v) $100 \mathrm{md} . / \mathrm{ac}$. of F.Y.M. was applied at sowing. (vi) Local Khasi (medium'. 'vii) Unirrigated. (viii) Two intercultures. (ix' $95.87^{\prime \prime}$. (x) 4.11.1955.

2. TREATMENTS :

1. Control.
2. Mixed fertilizer at $300 \mathrm{lb} . / \mathrm{ac}$.
3. Mixed fertilizer at 450 lb ./ac.

Half dose of fertilizers applied at sowing and half at first earthing up.
3. DESIGN and 4. GENERAL:

Same as in expt. no. $56(17)$ on page 63.
5. RESULTS :

Crop :- Maize.
Site :- Expt. Res. Stn., Upper Shillong.

Ref :- As. 59(7).

Type :- 'M'.
Object :-To study the effect of $\mathrm{A} / \mathrm{S} / \mathrm{N}$ and Super on Maize.

1. BASAL CONDITIONS :

(i) (a) Potato-Maize+Soyabean-Millet-Fallow. (b) Potato. (c) F.Y.M. at $200 \mathrm{mds} / \mathrm{ac}$., oilcake at $5 \mathrm{mds} / \mathrm{ac}$. and mixed fertilizer at $200 \mathrm{lb} . / \mathrm{ac}$. (ii) Sandy loam. (b) N.A. (iii) 19.6.1959. (iv) (a) Ploughing and pulverising. (b) Furrow planting. (c) $15 \mathrm{srs} / \mathrm{ac}$ (d) $2^{\prime} \times 1^{\prime}$. (e) 2 seeds/hole. (v) F.Y.M. at 200 mds/ac. applied at the time of sowing. (vi) Local, white round (medium). (vii) Unirrigated. (viii) Earthing up once and weeding. (ix) $35.17^{\prime \prime}$. (x) 12.11.1959.
2. TREATMENTS :

1. Controi.
2. A/S at $300 \mathrm{lb} . / \mathrm{ac}$.
3. A/S at 300 lb ./ac. + Super at 225 lb ./ac.

Fertilizers were applied at the time of earthing up.
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 4 . (iv) (a) and (b) $20^{\prime} \times 16^{\prime}$. (v) No. (vi) Yes.
4. GENERAL :
(i) Poor. (ii) No. (iii) Yield of grain. (iv) (a) No. (b) and (c) -. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $396.7 \mathrm{lb} . / \mathrm{ac}$. (ii) $136.0 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of grain in lb./ac.

Treatment	1	2	3
Av. yield	374	442	374

S.E./mean $=68.0 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Maize (Kharif).
Centre:- Jorhat (c.f.).

Ref :- As. 59(46).
Type :- 'D'.

Object :-To find out the most economic and effective way of controlling weeds of Maize.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Potato. (c) Cowdung at 200 mds/ac. (ii) Sandy loam. (iii) Cowdung at $200 \mathrm{mds} / \mathrm{ac}$. (iv) Local. (v) (a) Ploughing and laddering. (b) Dibbling. (c) to (e) N.A. (vi) 28.3.1959. (vii) Unirrigated. (viii) and (ix) N.A. (x) 13 to 15.6.1959.

2. TREATMENTS :

All combinations of (1) and (2) +2 extra treatments.
(1) 4 weedicides: $S_{1}=$ Fernoxone, $S_{2}=$ Dicotox, $S_{3}=$ Kathon and $S_{4}=$ Agroxone.
(2) 3 levels of weedicides : $L_{1}=8, L_{2}=16$ and $L_{3}=24 \mathrm{oz} . / \mathrm{ac}$. dissolved in 60 gallons of uater and sprayed.
Estra treatment : $\mathrm{T}_{1}=$ Control (no weeding) and $\mathrm{T}_{2}=$ Local method of weeding (cultural).
3. DESIGN :
(i) and (ii) 5 block of 14 plots each were selected from the agreeable cultivators in the same locality. (iii) (a) $13^{\prime} \times 13^{\prime}$. (b) $11^{\prime} \times 11^{\prime}$. (iv) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1959-contd. (b) and (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $548 \mathrm{lb} . / \mathrm{ac}$. (ii) $94 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effects of S and L and T_{1} vs T_{2} are highly significant. Others are not significant. (iv) Av. yield of grain inl b./ac.

Crop :- Matikalai (Rabi).	Ref :- As. 58(34).
Site :- Govt. Agri. Farm, Jorhat.	Type :- ‘M'.

Object :-To study the effect of \mathbf{N} applied to Ma tikalai on acid soils.

1. BASAL CONDITIONS :
(i) a) N.A. (b) Ahu paddy. (c) 100 md .'ac. of cowdung+ 40 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$. (ii) (a) Old alluvial acid soil. (b) N.A. (iii; 15.9.1958. (iv; (a) 4 ploughings followed by laddering. ;b) Broadcasting. (c) 10 srs/ac. (d) and (e) N.A. (v) 125 md. fac. of cowdung. (vi) Local (early). (vii) Unirrigated. (viii) 1 weeding. (ix' $0.83^{\prime \prime}$. (x) 20.12.1958.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 levels of N as cowdung : $N_{0}=0, N_{1}=40$ and $N_{2}=60 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Triple Super : $\mathrm{P}_{0}=0, \mathrm{P}_{1}=40$ and $\mathrm{P}_{2}=60 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
'1; R.B. D Fact. (ii) (a) 9.
(b) $44^{\prime} \times 17^{\prime}$.
(iii) 4.
(iv) (a) $44^{\prime} \times 13^{\prime}$.
(b) $40^{\prime} \times 11^{\prime}$.
(v) $2^{\prime} \times 1^{\prime}$. (vi) Yes.
4. GENERAL :
(i. Satisfactory. (ii) N.A. (iii) Grain yield. (iv) (a) 1958 -contd. (b) Yes. (c) Nil. 'v; (a) and (b) Nil. (vi, and (vii) Nil.
5. RESULTS :
(i) $318 \mathrm{lb} . / \mathrm{ac}$. (ii) $96 \mathrm{lb} . / \mathrm{ac}$. (ii) N effect is highly significant. (iv) Av . yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	$\mathbf{P}_{\mathbf{0}}$	$\mathbf{P}_{\mathbf{1}}$	$\mathbf{P}_{\mathbf{2}}$	Mean
$\mathbf{N}_{\mathbf{0}}$	186	313	248	249
\mathbf{N}_{1}	334	291	344	323
$\mathbf{N}_{\mathbf{2}}$	297	359	492	383
Mean	272	321	361	318

S.E. of N or P marginal mean $=27.71 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table $\quad=48.00 \mathrm{lb} . / \mathrm{ac}$.

Grop :- Matikalai (Rabi).
Site :- Govt. Agri. Farm, Jarhat.

Ref :- As. 59(31).
Type :- ' \mathbf{M} '.

Object :-To study the effect of Nitrogen applied to Matikalai on acid soils.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Ahu Paddy. (c) $100 \mathrm{md} . / \mathrm{ac}$. of cowdung +40 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$. (ii) (a) Old alluvial acid soil. (b) N.A. (iii) 14.10 .1959 . (iv) (a) 4 ploughings followed by laddering. (b) Broadcasting. (c) $10 \mathrm{srs} / \mathrm{ac}$. (d) and (e) N.A. (v) $125 \mathrm{md} / \mathrm{ac}$. of cowdung. (vi) Local (early). (vii) Unirrigated. (viii) 1 weeding. (ix) $1.83^{\prime \prime}$. (x) 18 and 19.1.1960.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 58(34) on page 68.
5. RESULTS :
(i) $78 \mathrm{lb} . / \mathrm{ac}$. (ii) $24 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effect of P is highly significant. Interaction $\mathrm{N} \times \mathrm{P}$ is significant. (iv) Av, yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	P_{0}	P_{1}	P_{2}	Mean
N_{0}	32	64	168	88
$\mathrm{~N}_{1}$	41	63	92	65
$\mathrm{~N}_{2}$	45	60	136	80
Mean	39	62	132	78

S.E. of N or $\dot{\mathbf{P}}$ marginal mean $\quad=\quad 6.9 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table $\quad=.12 .0 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Potato (Rabi).
Site :- Govt. Agri. Farm, Jorhat.

Ref :- As. 59(33).

Type :- ' \mathbf{M} '.

Object :-To study the effect of N, P and K on Potato.

1. BASAL CONDITIONS :
(i) (a) and (b) Maize. (c) 20 lb ./ac. of as cowdung +40 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super +40 lb ./ac. of N as $\mathrm{A} / \mathrm{S}, \mathrm{A} / \mathrm{C}$ and Urea. (ii) (a) Old alluvial acid soil. (b) N.A. (iii) 11.11 .1959 . (iv) (a) 5 ploughings followed by laddering. (b) Sown in lines. (c) N.A. (d) $24^{\prime \prime} \times 6^{\prime \prime}$. (e) 1 . (v) $60 \mathrm{lb} . / \mathrm{ac}$. of N as cowdung broadcast on 10.11.1959. (vi) Local. (vii) Unirrigated. (viii) Hoeing and earthing twice. (ix) $1.26^{\prime \prime}$. (x) 27.2.1960 to 2.3.1960.

TREATMENTS :

4 manurial treatments : $\mathrm{T}_{0}=$ Control, $\mathrm{T}_{1}=50 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+50 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Triple Super +50 $\mathrm{lb} . / \mathrm{ac}$. of $\mathrm{K}_{2} \mathrm{O}$ as Mur. Pot., $\mathrm{T}_{2}=75 \mathrm{lb}$./ac. of \backslash as $\mathrm{A} / \mathrm{S}+75 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Triple Super +75 lb ./ac. of $\mathrm{K}_{2} \mathrm{O}$ as Mur. Pot. a nd $\mathrm{T}_{3}=100 \mathrm{lb}$./ac. of N as $\mathrm{A} / \mathrm{S}+75 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Triple Super +100 lb ./ac. of $\mathrm{K}_{2} \mathrm{O}$ as Mur. Pot.
3. DESLGN :
(i) R.B.D. (ii) (a) 4 . (b) $48^{\prime} \times 25^{\prime}$. (iii) 3 . (iv) (a) and (b) $25^{\prime} \times 12^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Yield of potato. (iv) (a) 1959-contd. (b) Yes. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $9501 \mathrm{lb} . / \mathrm{ac}$. (ii) $587 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. (iv) Av. yield of potato in $1 \mathrm{~b} . / \mathrm{ac}$.

Treatment	T_{0}	$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$
Av. yield	6921	11162	9848	10071
	S.E./Mean	$=$	$339 \mathrm{lb} . / \mathrm{ac}$.	

```
Crop :- Potato (Rabi).
Site :- Agri. College, Jorhat.
```

Ref :- As. 58(44).
Type :- ' \mathbf{M} '.

Object:-To find out suitable fertilizers for Potato.

1. BASAL CONDITIONS :
(i) (a) and (b) G.M. (c) Nil. (ii) (a) Sandy loam. (b) $\mathrm{pH}-4.5$. (iii) 29.10 .1958 . (iv) (a) 1 ploughing with tractor followed by 3 ploughings with desi plough and laddering. (b) Dibbling. (c) $820 \mathrm{lb} . / \mathrm{ac}$. (d) $2^{\prime} \times 1^{\prime}$. (e) $1 . \quad$ (v) $200 \mathrm{md} . / \mathrm{fac}$. of cowdung+T.C. at $70 \mathrm{lb} . / \mathrm{plot} .+$ Mustard oilcake at $1.5 \mathrm{lb} . / \mathrm{plot}$. (vi) Local Khasi. (vii) Irrigated. (viii) 1 hoeing and 1 earthing. (ix) N.A. (x) 6,7.2.1959.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 levels of N as $A_{i} S: N_{0}=0, N_{1}=60$ and $N_{2}=120 \mathrm{lb}$./ac.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{0}=0, \mathrm{P}_{1}=30$ and $\mathrm{P}_{2}=60 \mathrm{lb} . / \mathrm{ac}$.
(3) 3 levels of $\mathrm{K}_{2} \mathrm{O}$ as Pot. Sul.: $\mathrm{K}_{3}=0, \mathrm{~K}_{1}=40$ and $\mathrm{K}_{2}=80 \mathrm{lb}$./ac.
3. DESIGN :
(i) 3^{3} confd. Fact. (ii) (a) 9. (b) $22^{\prime} \times 81^{\prime}$. (iii) 4 . (iv) (a) and (b) $22^{\prime} \times 9^{\prime}$. (v) No. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Perenox sprayed to prevent blight. (iii) Yield of potato. (iv) (a) No. (b) and (c) Ni.. (v; (a) and (b) N.A. (vi) and (vii) N.A.

5. RESULTS :

(i) 6702 lb .'ac. (ii) $1245 \mathrm{lb} . / \mathrm{ac}$. (iii) Only K effect is significant. (iv) Av. yield of potato in $\mathrm{lb} . / \mathrm{ac}$.

	P_{0}	P_{1}	P_{2}	Mean	K_{0}	K_{1}	K_{3}
N_{0}	6194	6606	6526	6442	5889	6774	6664
N_{1}	6882	6632	7065	6859	6810	7526	6242
N_{2}	6025	7122	7264	6804	6723	7173	6515
Mean	6367	6787	6952	6702	6474	7157	6474
K_{0}	5896	6883	6643				
K_{1}	6785	7250	7436				
K_{2}	6419	6226	6776				

S.E. of any marginal mean	$=207.5 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of any table	$=359.4 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Potato.

Site :- Expt. Res. Stn., Upper Shillong.

Ref :- As. 55(11).
Type :- ' \mathbf{M} '.

Object :-To find out the effect of $\mathrm{A} / \mathrm{S}_{/}^{\prime} \mathrm{N}$ and Super on Potato crop.

1. BASAL CONDITIONS :
(i) (a) Potato-Maize+Soyabean-Millet-Fallow. (b) Fallow. (c) Nil. (ii) (a) Sandy loam. (b) N.A. (iii) 13.4.1955 (iv) (a) Two ploughings with turn-wrest plough followed by laddering, harrowing. (b) Planting in furrows. (c) N.A. (d) $2^{\prime} \times 1^{\prime}$. (e) N.A. (v) F.Y.M. at $100 \mathrm{mds} / \mathrm{ac}$. was applied at the time of planting. (vi) Up-to-date (medium). (vii) Unirrigated. (viii) Two intercultures. (ix) 93.9. (x) 6.10.1955.
2. TREATMENTS:
$T_{0}=$ Control.
$\mathrm{T}_{1}=300 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{A} / \mathrm{S} / \mathrm{N}$.
$\mathrm{T}_{\mathbf{2}}=300 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{A} / \mathrm{S} / \mathrm{N}+375 \mathrm{lb} . / \mathrm{ac}$. of Super.
Fertilizers were applied at the time of planting.
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 4. (iv) (a) and (b) $33^{\prime} \times 16.5^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) No lodging. (ii) Late blight, two sprayings given during the growth period with perenox. (iii) Yield of potato. (iv) (a) and (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $2016 \mathrm{lb} . / \mathrm{ac}$. (ii) $381.1 \mathrm{lb} . / \mathrm{ac}$. (ii) Treatment differences are highly significant. (iv) Av. yield of potato in $\mathrm{lb} / \mathrm{ac}$.

Treatment	T_{0}	$\mathrm{~T}_{2}$	$\mathrm{~T}_{2}$
Av. yield	1193	1646	3210
	S.E./mean	$=$	$190.6 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Potato.	Ref :- As. 56(20).
Site :- Expt. Res. Stn., Upper Shillong.	Type :- 'M'.

Object :-To find out the effect of different nitrogenous fertilizers with and without Super on Potato.

1. BASAL CONDITIONS :
(i) (a) Potato--Maize+Soyabean-Millet-Fallow. (b) Fallow. (c) Nil. (ii) (a) Sandy loam. (b) N.A. (iii) 31.3.1956. (iv) (a) Two ploughings with turn-wrest plough followed by laddering and harrowing. (b) In furrows. (c) N.A. (d) $2^{\prime} \times 1^{\prime}$. (e) N.A. (v) $100 \mathrm{md} . / \mathrm{ac}$. of F.Y.M. was applied to all the plots in furrows at the time of planting. (vi) Arran consul (late). (vii) Unirrigated. (viii) One interculture. (ix) $140.21^{\prime \prime}$. (x) 17.10.1956.
2. TREATMENTS :
$\mathrm{T}_{0}=$ Control.
$\mathrm{T}_{1}=300 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{A} / \mathrm{S} / \mathrm{N}$.
$\mathrm{T}_{2}=300 \mathrm{lb}$./ac. of $\mathrm{A} / \mathrm{S} / \mathrm{N}+225 \mathrm{lb}$./ac. of Super.
Fertilizers were applied at the time of planting.
3. DESIGN :
(i) R.E.D.
(ii) (a) 3 .
(b) N.A.
(iii) 4. (iv) (a) and (b) $33^{\prime} \times 16.5^{\prime}$.
(v) Nil. (vi) Yes.
4. GENERAL :
(i) No lodging. (ii) Late blight-one spraying was given with Copper oxychloride. (iii) Yield of potato. (iv)
(a) and (b) No.
(c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $219.5 \mathrm{lb} / \mathrm{ac}$. (ii) $38.79 \mathrm{lb} / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of potato in lb ./ac.

Treatment	T_{0}	$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$
Av. yield	205.8	205.8	246.9
	S.E mean	$=$	$19.39 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Potato.

Site :- Expt. Res. Stn., Upper Shillong.

Ref :- As. 57(15).
 Type :- ${ }^{6} \mathbf{M}^{\prime}$.

Object :--To find out the effect of different nitrogenous fertilizers with and without Super on Potato.

1. BASAL CONDITIONS :
(i) (a) Potato-Maize+Soyabean-Millet-Fallow. (b) Fallow. (c) Nil. (ii) (a) Sandy loam. (b) N.A. (iii) 16.4.1957. (iv) (a) Two ploughings with turn-wrest plough fallowed by laddering and harrowing. (b) Planting in furrows. (c) 306 tubers/plot. (d) $2^{\prime} \times 1^{\prime}$. (e) N.A. (v) $200 \mathrm{md} . / \mathrm{ac}$. of F.Y.M. applied at the time of planting. (vi) Inverness Favourite (medium), (vii) Unirrigated. (viii) One interculture. (ix) $60.00^{\prime \prime}$. (x) 14.10 .1957.

2. TREATMENTS :

Same as in expt. no. 56(20) on page 71.
3. DESIGN :
(i) R.B.D. (ii) (a) 3 . (b) $16.5^{\prime} \times 102^{\prime}$. (iii) 4. (iv) (a) and (b) $33^{\prime} \times 16.5^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) No lodging. (ii; Late blight-one spraying was done with N.C.C. fungicide. (iii) Yield of potato. (iv) (a) to (c) No. (v) (a; and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $753.9 \mathrm{lb} . / \mathrm{ac}$. (ii) $171.3 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. (iv) Av. yield of potato in lb ac .

Treatment	T_{0}	$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$
Av. yield	452.6	493.8	1316.8
	S.E./mean	$=$	$85.65 \mathrm{lb} . / \mathrm{ac}$.

Grop :- Potato (Kharif).	Ref :- As. 58(13).
Site :- Expt. Res. Stn., Upper Shillong.	Type :- ‘M'.

Object :-To study the effect of different nitrogenous fertilizers with and without Super on Potato.

1. BASAL CONDITIONS :
(i) (a) Potato-Maize+Soyabean-Millet-Fallow. (b) Fallow. (c) Nil. (ii) (a) Sandy loam. (b) N.A.
(iii) 31.3.1958. (iv) (a) Ploughing and pulverising. (b) Furrow planting. (c) $20 \mathrm{md} . / \mathrm{ac}$. (d) $2^{\prime}:<1^{\prime}$.
(e; 1. :v’ $200 \mathrm{md} . / \mathrm{ac}$. of F.Y.M. applied in furrow; at the time of planting. (vi) Local Khasi (meditm).
(vii) Unirrıgated. (viii) Weeding and earthing twice. (ix) $47.47^{\prime \prime}$. (x) 10.11.1958.
2. TREATEMENTS :

Same as in expt. no. $56(20)$ on page 71.
3, DESIGN :
(i. R.B.D.
(ii' (a) 3
(b) N.A. (iii) 4 .
(iv) (a) and (b) $12^{\prime} \times 10^{\prime}$.
(v) No. (vi) Yes.
4. GENERAL :
(i) Not good. (ii) Affected by late blight ; Copper oxy=hloride sprayed twice. (iii) Yield of potato. (iv) (a) 1958-1959. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $3569 \mathrm{lb} . / \mathrm{ac}$. (ii) $1009 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. (iv) Av. yie d of potato in lb ./ac.

Treatment	T_{0}	$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$
Av. y ield	907	4719	5082

Crop :- Potato (Kinarif).
Site :- Expt. Res. Stn., Upper Shillong.

Ref :- As. 59(2).
Type :- 'M'.

Object :--To study the effect of different nitrogenous fertilizers with and without Super on Potato.
1 BASAL CONDITIONS :
i; a; Potato-Maize+Soyabean-Millet-Fallow. (b) Fallow. (c) Nil. iii) Sandy loam. (b N.A. (iii) 154.1959 . (iv' (a) Ploughing and pulverising. (b) In furrows. (c) 20 mds/ac. (d) $2^{\prime} \times 1^{\prime}$. (e) 1 tuber/hole. (v) $200 \mathrm{md} . / \mathrm{ac}$. of F.Y.M. applied in furrows at the time of planting seed tubers. (vi) Up-todate 'medium). (vii) Unirrigated. (viii) Weeding and earthing once. (ix) 58.06°. (x) 13.11 .1959 .
2. TREATMENTS:

Same as in expt. no. 56 (20) on page 71.
3. DESIGN :
(i) R.B.D.
(ii) (a) 3 .
(b) N.A. (iii) 4 .
(iv) (a) and (b) $20^{\prime} \times 16^{\prime}$.
(v) No. (vi) Yes.
4. GENERAL :
(i) Most of the plants died due to continucus rain fall. (ii) Affected by late blight and other virus diseases ; Copper oxychloride sprayed once. (iii) Yield of potato. (iv) (a) 1958-1559. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii). Nil.
5. RESULTS :
(i) $58.37 \mathrm{lb} / \mathrm{ac}$. (ii) $7.89 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differerces are not signjficant. (iv) Av. yield of potato in lb./ac.

Treatment	Γ_{0}	$\mathrm{~T}_{\mathbf{1}}$	T_{2}
Av. yield	55.42	55.76	63.92
	S.E. $/$ mean	$=$	$3.95 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Potato.
 Site :- Expt. Res. Stn., Upper Shillong. - Type :- ‘M'.

Object :-To study the effect of different doses of mixed fertilizers, alone and in combination with Potash on Potato.

1. BASAL CONDITIONS :
(i) to (ix) Same as in expt. no. $58(13)$ on page 72. (x) 14.11.1958.
2. TREATMENTS :
$\mathrm{T}_{0}=$ Control.
$\mathrm{T}_{1}=625 \mathrm{lb} . / \mathrm{ac}$. of mixed fertilizers.
$\mathrm{T}_{2}=940 \mathrm{lb}$./ac. of mixed fertilizers.
$\mathrm{T}_{3}=625 \mathrm{lb} . / \mathrm{ac}$. of mixed fertilizers +200 lb ./ac. of Mur. of Pot.
3. DESIGN :
(i) R.B.D.
(ii) (a) 4 .
(b) N.A.
(iii) 4. (iv) (a) and (b) $12^{\prime} \times 10^{\prime}$
(v) No. (vi) Yes.
4. GENERAL :

Same as in expt. no. 58(13) on page 72.
5. RESULTS :
(i) $4220 \mathrm{lb} . / \mathrm{ac}$. (ii) $838 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. (iv) Av. yield of potato in $\mathrm{lb} . \mathrm{ac}$.

Treatment	$\mathrm{T}_{\mathbf{0}}$	$\mathbf{T}_{\mathbf{1}}$	$\mathbf{T}_{\mathbf{2}}$	T_{3}
Av. yield	$\mathbf{1 6 3 4}$	5264	5264	4719
	S.E./mean	$=$	$419 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- F'otato (Kharif).	Ref :- As. 59(4).
Site :- Expt. Res. Stn., Upper Shillong.	Type :- ‘M'.

Object :-To study the effect of mixed fertilizers in different doses and in combination with Potash on Potato.

1. BASAL CONDITIONS:
(i) to (ix) Same as in expt. no. 59(2) on page 72. (x) 14.11.1959.

2. TREATMENTS :

Same as in expt. no. 58(18) above.
3. DESIGN :
(i) R.B.D. (ii’ (a) 4. (b) N.A. (iii) 4. (iv) (a) and (b) $20^{\prime} \times 16^{\prime}$. (v) No. (vi) Yes.
4. GENERAL :

Same as in expt. no. 59(2) on page 72.
5. RESULTS :
(i) $91.89 \mathrm{lb} . / \mathrm{ac}$. (ii) $19.72 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of potato in lb./ac.

Treatment	T_{0}	$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$
Av. yield	98.26	102.68	85.34	81.26
	S.E./mean	$=$	9.86 lb ./ac.	

Grop :- Potato.	Ref :- As. 56(22).
Site :- Expt. Res. Stn., Upper Shillong.	Type :- ‘M:.

Object :-To find out the effect of A / S and Super on the yield of Potato.

1. BASAL CONDITIONS :

Same as in expt. no. $56(20)$ on page 71.
2. TREATMENTS :
$\mathrm{T}_{0}=$ Control.
$\mathrm{T}_{1}=375 \mathrm{lb} . / \mathrm{ac}$. of A/S.
$\mathrm{T}_{2}=375 \mathrm{lb}$./ac. of $\mathrm{A} / \mathrm{S}+225 \mathrm{lb} . / \mathrm{ac}$. of Super.
Fertilizers were applied at the time of planting.
3. DESIGN and 4. GENERAL :

Same as in expt. no. 56 (20) on page 71.
5. RESULTS :

Crop :- Potato.

Site :- Expt. Res. Stn., Upper Shillong.

Ref :- As. 57(14).
Type :- ' \mathbf{M} '.

Object:-To find ort the effect of A / S and Super on the yield of Potato.

1. BASAL CONDITIONS :

Same as in expt. no. 57(15) on page 71.
2. TREATMENTS :

Same as in expt. no. 56(22) above.
3. DESIGN and 4. GENERAL :

Same as in expt. no. $57(15)$ on page 71.
5. RESULTS:
(i) 548.7 lb .'ac. (ii) 155.1 lb ./ac. (iii) Treatment differences are highly significant. (iv) Av. yield of potato in lb . $/ \mathrm{ac}$.

Treatment	$\mathrm{T}_{\mathbf{0}}$	T_{1}	$\mathrm{~T}_{\mathbf{2}}$
Av. yield	329.2	411.5	905.3
	S.E. $/$ mean	$=$	77.5 b́ $\mathrm{lb} . / \mathrm{ac}$.

```
Crop :- Potato (Kharif).
Site :- Expt. Res. Stn., Upper Shillong.
Ref :- As. }58\mathrm{ (14).
Type :- 'M'.
```

Object :-To study the effect of A/S alone and with Super on the yield of Potato.

1. BASAL CONDITIONS :

Same as in expt. no. 58 (13) on page 72.
2. TREATMENTS :

Same as in expt. no. 56 (22) on page 74.
3. DESIGN and 4. GENERAL :

Same as in expt. no. 58 (13) on page 72.
5. RESULTS:
(i) 2601 lb ./ac. (ii) $838 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are significant. (iv) Av. yield of potato in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	T_{0}	$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$
Av. yield	1633.5	2541.0	3630.0
	S.E./mean	$=$	$.419 \mathrm{lb} . / \mathrm{ac}$.

```
Crop :- Potato (Kharif). Ref :- As. 59(1).
Site :- Expt. Res. Stn., Upper Shillong. Type :- 'MM'
```

Object :-To study the effect of A/S alone and with Super on the yield of Potato.

1. BASAL CONDITIONS :

Same as in expt. no. 59(2) on page 72.
2. TREATMENTS :

Same as in expt. no. 56(22) on page 74.
3. DESIGN :

Same as in expt. no. 59(2) on page 72.
4. GENERAL :
(i) Very poor. Most of the plants died due to continuous rainfall. (ii) Late blight. Copper oxychloride sprayed once. (iii) Potato yield. (iv) (a) 1958-1959. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $87.83 \mathrm{lb} / \mathrm{ac}$. (ii) $27.74 \mathrm{lb} / \mathrm{ac}$. (iii) Treatment differences are.significant. (iv) Av. yield of potato in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	T_{0}	$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$
Av. yield	119.0	59.5	85.0
	S.E./mean	$=$	$13.87 \mathrm{jb} . / \mathrm{ac}$.

Crop :- Potato.
Ref :- As. 56(21).
Site :- Expt. Res. Stn., Upper Shillong.
Type :- ‘M'.

Object:-To find out the effect of nitrogenous and phosphatic fertilizers on the yield of Potato.

1. BASAL CONDITIONS :

(i) (a) Potato-Maize + Soyabean-Millet-Fallow. (b) Fallow. (c) Nil. (ii) (a) Sandy loam. (b) N.A. 'iii) 31.3.1956. (iv) ,a) 2 ploughings with turn-wrest plough followed by laddering and harrowing. (b) and (c) N.A. d) $2^{\prime} \times 1^{\prime}$. (e) N.A. ($v^{\prime}, 100 \mathrm{md} /$ /ac. of F.Y.M. applied in furrows at the time of planting. (vi) Arran consul (late). (vii) Unirrigated. (viii) 1 interculturing. (ix) $140.21^{\prime \prime}$. (x) 17.10.1956.
2. TREATMENTS :
$\mathrm{T}_{1}=$ Control .
$\mathrm{T}_{2}=175 \mathrm{lb} . / \mathrm{ac}$. of Urea.
$\mathrm{T}_{3}=175 \mathrm{lb}$./ac. of Urea +225 lb ./ac. of Super.
Fertilizers were applied at the time of planting.
3. DESIGN :
(i) R.B.D. (ii) , a) 3. (b) N.A. (iii) 4 . (iv) (a) and (b) $33^{\prime} \times 16.5^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) No lodging. (ii) Late blight; one spraying was given with copper oxychloride. (iii) Yield of potato. (iv) (a) and (b) No. (c) Nil. (v) (a) and (b) N. A. (vi) and (vii) Nil.
5. RESULTS :
(i) $137.2 \mathrm{lb} . / \mathrm{ac}$. (ii) 57.79 lb ./ac. (iii) Treatment differences are not significant. (iv; Av. yizld of potato in lb ./ac.

Treatment	T_{1}	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$
Av. yield	102.9	102.9	205.7
	S.E. $/$ mean	$=$	$28.89 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Potato.
 Site :- Expt. Res. Stn., Upper Shillong.

Ref :- As. 57(13).
Type :- ' $\mathbf{M '}^{\prime}$.

Object:--To find out the effect of different nitrogenous and phosphatic fertilizers on the yield of Potato.

1. BASAL CONDITIONS :
(i) (a) Potato-Maize+Soyabean-Millet-Fallow. (b) Fallow (c) Nil. (ii) (a) Sandy loam. (b) N.A. (iii) 16.4.1957. (iv) (a) Two ploughings with turn-wrest plough followed by laddering, harrowing, etc. (b) Planting in furrows. (c) 306 tubers/plot. (d) $2^{\prime} \times 1^{\prime}$. (e) N.A. (v) F.Y.M. at $200 \mathrm{mds} / \mathrm{ac}$. applied in furrows at the time of planting. (vi) Inverness favourite (medium). (vii) Unirrigated. (viii) 1 interculturing. (ix) 60°. (x) 14.10.1957.
2. TREATMENTS :

Same as in expt. no. 56(21) above.
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) $16.5^{\prime} \times 102^{\prime}$. (iii, 4. (iv) (a) and (b) $33^{\prime} \times 16.5^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) No lodging. (ii) Late blight; one spraying was given with N.C.C. fungicide. (iii) Yield of potato. (iv) (a) and 'b; No. cc; Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:

[^2]| Treatment | T_{1} | $\mathrm{~T}_{2}$ | $\mathrm{~T}_{3}$ |
| :--- | :--- | :--- | :---: |
| Ar. yield | 370.4 | 370.4 | 535.0 |
| | S.E./mean | $=82.30 \mathrm{lb} . / \mathrm{ac}$. | |

Crop:- Potato.
 Ref :- As. 58(15).
 Site :- Expt. Res. Stn., Upper Shillong.
 Type :- ' \mathbf{M}^{\prime}.

Object :-To study the effect of nitrogenous and phosphatic fertilizers on the yield of Potato.

1. BASAL CONDITIONS :
(i) to (ix) Same as in expt. no. 58(13) on page 72. (x) 11.11.1958.
2. TREATMENTS:

Same as in expt. no. $56(21)$ on page 76.
3. DESIGN and 4. GENERAL :

Same as in expt. no. 58(13) on page 72.
5. RESULTS :

\qquad

```
Crop :- Potato (Kharif).
Site :- Expt. Res. Stn., Upper Shillong.
Ref :- As. 59(3).
Type :- \({ }^{\mathbf{C}} \mathbf{M}\) '.
```

Object :-To study the effect of nitrogenous and phosphatic fertilizers on the yield of Potato.
BASAL CONDITIONS :
(i) to (ix) Same as in expt. no. $59(2)$ on page 72. (x) 14.11.1959.
2. TREATMENTS :

Same as in expt. no. $56(21)$ on page 76.
3. DESIGN and 4. GENERAL :

Same as in expt. no. 59(2) on page 72.
5. RESULTS :
(i) 124.8 Bb /ac. (ii) $80.21 \mathrm{Ib} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of potato
in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	$\mathbf{T}_{\mathbf{1}}$	$\mathbf{T}_{\mathbf{2}}$	\mathbf{T}_{3}
Av. yield	$\mathbf{1 2 7 . 5}$	$\mathbf{1 5 7 . 4}$	89.4
	S E./mean	$=$	$40.11 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Potato (Kharif).
Site :- Expt. Res. Stn, Upper Shillong. Type :- ‘M'.
Object :-To study the effect of nitrogenous fertilizers on the yield of Potato.

1. BASAL CONDITIONS :

(i) to 'ix) Same as in expt. no. 58(13) on page 72. (x) 12.11.1958.

2. TREATMENTS :

$\mathrm{T}_{0}=$ Control
$\mathrm{T}_{1}=475 \mathrm{lb} . / \mathrm{ac}$. of C / N.
$\mathrm{T}_{2}=375 \mathrm{lb} . / \mathrm{ac}$. of A / S.
3. DESIGN and 4. GENERAL :

Same as in expt. no. 58(13) on page 72
5. RESULTS :
(i) $3206.5 \mathrm{lb} . / \mathrm{ac}$. (ii, $838 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of potato in lb./ac.

Treatment	T_{0}	$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$
Av. yield	2722.5	2904.0	3993.0
	S.E./mean	$=419 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Potato.	Ref :- As. 59(6).
Site :- Expt. Res. Stn, Upper Shillong	Type := $6 \mathbf{M}$,

Site :- Expt. Res. Stn., Upper Shillong.
Type :- ' \mathbf{M}^{\prime} '
Object :-To study the effect of different nitrogenous fertilizers on the yield of Potato.

1. BASAL CONDITIONS :
ii) (a) Potato-Maize + Soyabean-Millet-Fallow. (b) Fallow. (c) Nil. (ii) (a) Sandy loam. (b) N.A. (iii) 16.4.1959. (iv) (a) ploughing and pulverising. (b) Furrow planting. c; $20 \mathrm{md} / \mathrm{ac}$. (d, $2^{\prime} \times 1^{\prime}$. (e) One tuber/hole. (v) $200 \mathrm{md} . / \mathrm{ac}$. of F.Y.M. applied at the time of planting. (vi; Up-to-date (medium) .vii, Unirrigated. (viii) 1 interculturing. (ix) $58^{\prime \prime}$. (x) 16.11.1959.

2. TREATMENTS :

Same as in expt. no. $58: 16$) on page 77.
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 3. (iv) (a) and (b) $20^{\prime} \times 16^{\prime}$. (v) Nil. (vi; Yes.
4. GENERAL :
(i) Very poor. (ii) Late blight and other virus diseases. Copper oxychloride sprayed once. (iii) Potato yield. (iv) (a; 1958-1959. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii, Nil.
5. RESULTS :
(i) $144.7 \mathrm{lb} . / \mathrm{ac}$. (ii) $62.7 \mathrm{lb} .{ }^{\prime} \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yithd of potato in ! $\mathrm{b} . / \mathrm{ac}$.

Treatment	T_{0}	$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$	
Av. yield	148.9	170.0	115.3	
	S.E./mean	$=$	$36.20 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Potato (Kharif).	Ref :- As. 58(17).
Site :- Expt. Res. Stn., Upper Shillong.	Type : ' $^{\text {'M'. }}$

Object :-To study the effect of different nitrogenous fertilizers on the yield of Potato.

1. BASAL CONDITIONS :

[^3]2. TREATMENTS :
$T_{1}=600 \mathrm{lb} . / \mathrm{ac}$. of A / S.
$\mathrm{T}_{2}=470 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{A} / \mathrm{S} / \mathrm{N}$.
$\mathrm{T}_{3}=275 \mathrm{lb}$./ac. of Urea.
3. DESIGN and 4. GENERAL:

Same as in expt. no. 58(13) on page 72.
5. RESULTS :
(i) $3085 \mathrm{lb} . / \mathrm{ac}$. (ii) $574 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are significant. (iv) Av. yield of potato in lb ./ac.

Treatment	T_{1}	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$
Av. yield	2541.0	3993.0	2722.5
	S.E. $/$ mean	$=$	$287 \mathrm{lb} . / \mathrm{ac}$.

```
Grop:- Potato (Kharif).
Site :- Expt. Res. Stn., Upper Shillong.
Ref:- As. 59(5).
Type :- 'M'.
```

Object :-To study the effect of different nitrogenous fertilizers on the yield of Potato.

1. BASAL CONDITIONS :

(i) (a) Potato-Maize + Soyabean-Millet-Fallow.
(b) Fallow. (c) Nil.
(ii) (a) Sandy loam.
(b) N.A.
(iii) 16.4.1959. (iv) (a) Ploughing and pulverising.
(b) Furrow planting.
(c) $20 \mathrm{md} . / \mathrm{ac}$.
(d) $2^{\prime} \times 1^{\prime}$. (e)
One tuber/hole. (v) Nil. (vi) Up-to-date (medium). (vii) Unirrigated. (viii) Weeding and earthing once. (ix) $58^{\prime \prime}$. (x) 16.11 .1959 .
2. TREATMENTS:

Same as in expt. no. 58(17) on page 78.
3. DESIGN :
(i) R.B.D. (ii) (a) 3 :
(b) N.A.
(iii) 3
(iv) (a) and (b) $20^{\circ} \times 16^{\prime}$.
(v) Nil. (vi) Yes.
4. GENERAL :
(i) Most of the plants died due to continuous rainfall. (ii) Affected by late blight and other virus diseases. Copper oxychloride sprayed once. (iii) Potato yield. (iv) (a) 1958-1959. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $52.7 \mathrm{lb} . / \mathrm{ac}$. (ii) $23.66 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of potato in lb./ac.

Treatment	T_{1}	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$
Av. yield	55.42	68.34	34.34
	S.E./mean	$=$	$13.66 \mathrm{lb} . / \mathrm{ac}$.

Grop:- Potato.

Site :- Expt. Res. Stn., Upper Shillong.

Ref :- As. 55(12).
Type :- ' \mathbf{M} '.

Object :-To find out the effect of different doses of mixed fertilizers on the yield of Potato.

1. BASAL CONDITIONS :
(i) (a) Potato-Maize + Soyabean-Millet-Fallow. (b) Fallow. (c) Nil. (ii) (a) Sandy loam. (b) N.A. (iii) 13.4.1955. (iv) (a) Two ploughings with turn-wrest plough followed by laddering and harrowing. (b) Planting in furrows. (c) N.A. (d) $2^{\prime} \times 1^{\prime}$. (e) N.A. (v) F.Y.M. at $100 \mathrm{md} . / \mathrm{ac}$. was applied to all the plots at the time of planting. (vi) Up-to-date (medium). (vii) Unirrigated. (viii) Two interculturings. (ix) 93.89". (x) 6.10.1955.

2. TREATMENTS :

1. Control.
2. 300 lb ./ac. of mixed fertilizers.
3. $450 \mathrm{lb} . / \mathrm{ac}$. of mixed fertilizers.

Fertilizers were applied at the time of planting.
3. DESIGN :

Same as in expt. no. 56(21) on page 76.
4. GENERAL :
(i) No lodging. (ii) Light blight, two sprayings with Perenox during the growth period. (iii Yield o potato. (iv) (a) and (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $2263 \mathrm{lb} . / \mathrm{ac}$. (ii) $531.2 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of potato in lb./ac.

Treatmeat	1	2	3
Av. yield	1893	2346	2551
	S.E./mean	$=$	$265.6 \mathrm{lb} . / \mathrm{ac}$.

\section*{Crop :- Potato.

Site :- Expt. Res. Stn., Upper Shillong.

\section*{Ref :- As. 56(27).

Ref :- As. 56(27).
 Type :- ' M '.

Object :-To find out the effect of mixed fertilizers and Potash on Potato crop.

1. BASAL CONDITIONS :
(i) Potato-Maize + Soyabean-Millet-Fallow. (b) Fallow. (c) Nil. (ii) (a) Sandy loam. (b) N.A. (iii) 31.3.1956. (iv) (a) Two ploughings with turnwrest plough followed by laddering, harrowirg etc. (b) Planting in furrows. (c) N.A. (d) $2^{\prime} \times 1^{\prime}$. (e) N.A. (v) $100 \mathrm{md} . / \mathrm{ac}$. of F.Y.M. applied in furrows at the time of planting. (vi) Arran consul (late). (vii) Unirrigated. (viii) 1 interculturing. (ix) 140.21^{*}. (x) 17.10 .1956
2. TREATMENTS:
3. Control.
4. 625 lb ./ac. of mixed fertilizers.
5. 940 lb ./ac. of mixed fertilizers.
6. 625 lb ./ac. of mixed fertilizers +200 lb ./ac. of Mur. Pot.

Fertilizers were applied at the time of planting.
3. DESIGN :
(i) R.B.D. (ii) (a) 4 . (b) $16.5^{\prime} \times 135^{\prime}$. (iii) 4 . (iv) (a) and (b) $33^{\prime} \times 16.5^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) No lodging. (ii) Late blight-one spraying was given with Copper oxychloride. (iii) Yield of potato. (iv: (a) and (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) 110.9 lb ./ac. (ii) 54.04 lb ./ac. (iii) Treatment differences are not significant. (iv) Av. yie!d of potato in lb./ac.

Treatment	1	2	3	4
Av. yield	97.7	111.9	131.2	102.9
	S.E./mean	$=$	$27.02 \mathrm{lb} . / \mathrm{ac}$.	

Grop :- Potate.
 Site :- Expt. Res. Stn., Upper Shillong.
 Ref :- As. 57(11).
 Type :- ‘M'.

Object :-To find out the effect of mixed fertilizers and potash on Potato crop.

1. BASAL CONDITIONS :

Same as in expt. no. 57(13) on page 76.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 56(27) on page 80.
4. GENERAL :
(i) No lodging. (ii) Late blight-one spraying was given with N.C.C. fungicide. (iii) Yield of potato. (iv) (a) and (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $565.8 \mathrm{lb} . / \mathrm{ac}$. (ii) $298.3 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of potato in $\mathrm{lb} / \mathrm{ac}$.

Treatment	1	2	3	4
Av. yield	699.6	617.2	452.6	493.8
	S.E. $/$ mean	$=$	$39.2 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Potato.
 Site :- Expt. Res. Stn., Upper Shillong.
 Ref:- As. 55(13).
 Type :- 'M'.

Object :-To find out the ffect of N in the form of C / N and $\mathrm{A} / \mathrm{S} / \mathrm{N}$ on Potato crop.

1. BASAL CONDITIONS :
(i) (a) Potato-Maize+Soyabean-Millet-Fallow. (ii) (a) Sandy loam. (b) N.A. (iii) 13.4.1955, (iv)
(a) Two ploughings with turn-wrest plough followed by laddering, harrowing etc. (b) Planting in furrows.
(c) N.A. (d) $2^{\prime} \times 1^{\prime}$. (e) N.A. (v) $100 \mathrm{md} . / a c$. of F.Y.M. applied at the time of planting. (vi) Up-to-date main (meatium). (vii) Unirrigated. (viii) Two intercultures were given to all the plots. (ix) $93.89^{\prime \prime}$. (x) 6.10 .1955 .
2. TREATMENTS :
3. Contril.
4. 500 lb ./ac. of C / N.
5. $300 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{A} / \mathrm{S} / \mathrm{N}$.

Fertilizers were applied at the time of planting.
3. DESIGN :

Same as in expt. no. 56(21) on page 76.
4. GENERAL :
(i) No lodging. (ii) Late blight-two sprayings were given with Perenox. (iii) Yield of potato. (iv) (a) and (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :

Crop :- Potato.
 Site :- Expt. Res. Stn., Upper Shillong.
 Ref :- As. 56(23).
 Type :- ' M '.

Object:-To find out the effect of N in the form of C / N and A / S on Potato crop.

1. BASAL CONDITIONS :

Same as in expt. no. 56(21) on page 76.
2. TREATMENTS :

1. Control
2. $475 \mathrm{lb} . / \mathrm{ac}$. of C / N.
3. $375 \mathrm{lb} / \mathrm{ac}$. of A/S.

Fertilizers were applied at the time of planting.
3. DESIGN and 4. GENERAL :

Same as in expt. no. 56(21) on page 76.
5. RESULTS :
(i) $185.17 \mathrm{lb} . / \mathrm{ac}$. (ii) $85.66 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yzld of potato in lb./ac.

Treatment	1	2	3
Av. yield	164.6	144.0	246.9
	S.E./mean	$=$	$42.83 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Potato.	Ref :- As. 57(10).
Site :- Expt. Res. Stn., Upper Shillong.	Type :- ‘M'.

Object :-To find out the effect of different nitrogenous fertilizers on Potato crop.

1. BASAL CONDITIONS :

Same as in expt. no. 57(13) on page 76.

2. TREATMENTS :

1. Control.
2. $475 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{C}^{\prime} \mathrm{N}$.
3. $475 \mathrm{lb} . / \mathrm{ac}$. of Nitro-lime.
4. $375 \mathrm{lb}, \mathrm{ac}$. of A / S.

Fertilizers applied at the time of planting.
3. DESIGN :
(i) R.B.D.
(ii; (a) 4.
(b) $16.5^{\prime} \times 135^{\prime} . \quad$ (iii) 4 .
(iv) (a) and (b)
(b) $33^{\prime} \times 16.5^{\prime}$.
(v) Nil. (vi) Yes.
4. GENERAL:
(i) No lodging. (ii) Late blight-one spraying was given with N.C.C. fungicide. (iii) Yield of potato. (iv) (a) and (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :

Crop :- Potato.
 Site :- Expt. Res. Stn., Upper Shillong.'

Ref :- As. 55(14).

Object:-To find out the effect of different nitrogenous fertilizers on Potato crop.

1. BASAL CONDITIONS :
(i) (a) Potato-Maize+Soyabean-Millet-Fallow. (b) Fallow. (c) Nil. (ii) (a) Sandy loam. (b) N.A. (iii) 13.4.1955. (iv) (a) Two ploughings with turn-wrest plough followed by laddering and harrowing. (b) Planting in furrows. (c) N.A. (d) $2^{\prime} \times 1^{\prime}$. (e) N.A. (v) $100 \mathrm{md} . / \mathrm{ac}$. of F.Y.M. applied at the time of planting. (vi) Up-to-date main (medium). (vii) Unirrigated. (viii) Two interculturings. "(ix) 93.9". (x) 6.0.1955.
2. TREATMENTS
3. Control.
4. $300 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{A} / \mathrm{S} / \mathrm{N}$.
5. ' $175 \mathrm{lb} . / \mathrm{ac}$. of Urea.

Fertilizers were applied at the time of planting.
3. DESIGN :
(i) R.B.D.
(ii) (a) 3 .
(b) N.A.
(iii) 4 . (iv)
(a) and (b) $33^{\prime} \times 16.5^{\prime}$.
(v) Nil. (vi) Yes.
4. GENERAL :
(i) No lodging. (ii) Late blight--two sprayings with Perenox during the growth period. (iii) Yield of potato. (iv) (a) and (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $1186 \mathrm{lb} . / \mathrm{ac}$. (ii) $545.8 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of potato in lb./ac.

Treatment	1	2	3
Av. yield	1029	1337	1193
	S.E./mean	$=$	$272.9 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Potato.

Site :- Expit. Res. Stn., Upper Shillong.

Ref :- As. 57(12).

Type :- ${ }^{6} \mathbf{M}^{\prime}$.
Object :-To find out the effect of different nitrogenous fertilizers on the yield of Potato.

1. BASAL CONDITIONS :
(i) (a) Potato-Maize+Soyabean-Millet-Fallow. (b) Fallow. (c) Nil. (ii) (a) Sandy loam. (b) N.A. (iii) 16.4.9957. (iv) (a) Two ploughings with turn-wrest plough followed by laddering, harrowing, etc. (b) Planting in furrows. (c) 306 tubers/plot. (d) $2^{\prime} \times 1^{\prime}$. (e) N.A. (v) Nil. (vi) Inverness Favourite (medium). (vii) Unirrigated. (viii) One interculturing. (ix) $60^{\prime \prime}$. (x) 14.10.1957.
2. TREATMENTS :
3. $600 \mathrm{lb} . / \mathrm{ac}$. of A / S.
4. $470 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{A} / \mathrm{S} / \mathrm{N}$.
5. 275 lb /ac. of Urea.
6. 750 lb ./ac. of Nitro-lime.

Fertilizers applied in furrows at the time of planting.

- DESIGN :
(i) R.B.D. (ii) (a) 4 . (b) $16.5^{\prime} \times 135^{\prime}$. (iii) 4 . (iv) (a) and (b) $33^{\prime} \times 16.5^{\prime}$. (v) Nil. (vi) Yes.

4. GENERAL :
(i) No lodging. (ii) Late blight—one spraying was given with N.C.C' fungicide. (iii) Yield of potato.
(iv) (a) and (b) No. (c) Nil. (v) (a) an I (b) N.Ä. (vi) and (vii) Nil.
5. RESULTS :
(i) $190.3 \mathrm{lb} . / \mathrm{ac}$. (ii) 55.40 lb /ac. (iii) Treatment differences are not significant. Giv) Av, yield of Potato in $\mathrm{lb} / \mathrm{ac}$.

Treatment	A	B	C	D
Av. yield	123.4	226.3	205.8	205.8
	S.E./mean	$=$	$27.70 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Potato.
 Ref :- As. 56(24).
 Site :- Expt. Res. Stn., Upper Shillong.
 Type :- ' \mathbf{M} '.

Object:-To find out the effect of different nitrogenous fertilizers on Potato crop.

1. BASAL CONDITIONS :
(i) (a) Potato-Maize+Soyabean-Millet-Fallow. (b) Fallow. (c) Nil. (ii) à Sandy loam (b) N.A. (iii) N.A /31.3.1956. (v) (a) Two ploughings with turn-wrest plough followed by laddering and harrowing. (b) and (c) N.A. (d) $2^{\prime} \times 1^{\prime}$. (e) N.A. (v; Nil. (vi) Arran consul (late'. (vii) Unirrigated. viii) One interculturing. (ix) $140.21^{\prime \prime}$. (x) 17.10 .1956 .

2. TREATMENTS :

1. $375 \mathrm{lb} . / \mathrm{ac}$. of A, S.
2. $300 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{A} / \mathrm{S} / \mathrm{N}$.
3. $175 \mathrm{lb} . / \mathrm{ac}$. of Urea.

Fertilizers were applied at the time of planting.
: DESIGN :
(i) R.B.D. (ii) (a; 3. (b) N.A. (iii) 4. (iv) (a) and (b) $33^{\prime} \times 16.5^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) No lodging. (ii) Late blight-one spraying was given with Copper oxychloride. (iii) Yield of potate. (iv) 'a’ and (b) No. (c) Nil. (v) (a) and 'b) N.A. (vi) No reasons given for low yield. (vii Nil.
5. RESULTS :
(i) 49.72 lb ./ac. (ii) $11.37 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yicid of pota.o in lb./ac.

Treatment	1	2	3
Av. yield	46.29	61.73	41.15
	S.E/mean	$=$	$5.68 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Potato (Rabi).	Ref :- As. 58(37).
Site :- Agri. College, Jorhat.	Type :- 'C'.

Object:-To find out a suitable spacing for the cultivation of Potato crop.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Maize. (c) $100 \mathrm{md} /$ /ac. of cowdung. (ii) (a) Sandy loam. (b) pH-4.5. (iii) 24.10 .1958. (iv) a: Pioughing once with tractor followed by 4 ploughings with bullocks and laddering. (b) Dibbling. (c) $945 \mathrm{lb} / \mathrm{ac}$. (d) As per treatments. (e) 1. (v) Cowdung at $150 \mathrm{mds} / \mathrm{ac} .$, T.C. at $1194 \mathrm{lb} . / \mathrm{ac}$. , oilcake (mustard) at $403 \mathrm{lb} . / \mathrm{ac}$. and $242 \mathrm{lb} . / \mathrm{a}$. of A/S broadcast. (vi) Local Khasi (medium). (vii) Irrigated. (viii) Hoeing, 2 weedings and earthings. (ix) N.A. (x) 5.2.1959.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 spacings between rows : $\mathbf{R}_{1}=18^{\circ}, \mathbf{R}_{2}=24^{\prime \prime}$ and $\mathbf{R}_{3}=30^{\circ}$.
(2) 3 spacings between plants: $P_{1}=6^{\prime \prime}, P_{2}=9^{\prime \prime}$ and $P_{2}=12^{\prime \prime}$.
3. DESIGN :
(i) Fact. in R.B.D. (ii) (a) 9. (b) $81^{\prime} \times 30^{\prime}$. (iii) 8 . (iv) (a) and (b) $30^{\prime} \times 9^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Perenox was sprayed as preventive measure. (iii) Yield of potato. (iv) (a) 1958-1959. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 5252 lb ./ac. (ii) $850 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effects of R and P are highly significant. Interaction $R \times P$ is not significant. (iv) Av. yield of potato in lb./ac.

	\mathbf{P}_{1}	$\mathbf{P}_{\mathbf{2}}$	$\mathbf{P}_{\mathbf{3}}$
\mathbf{R}_{1}	7404	6378	5007
$\mathbf{R}_{\mathbf{2}}$	6098	4809	4434
\mathbf{R}_{3}	5254	4171	3712
Mean	6252	5119	4384

S.E. of any marginal mean	$=173.5 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table	$=300.5 \mathrm{lb} . / \mathrm{ac}$.

```
Grop :- Potato (Rabi). \
Site :- Agri. College, Jorhat. Type :- 'C'.
```

Object :-To find out a suitable spacing for the cultivation of Potato crop.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy (Ahu). (c) $100 \mathrm{md} . / \mathrm{ac}$. of cowdung. (ii) (a) Sandy loam. (b) $\mathrm{pH}-4.5$. (iii) 18.11.1959. (iv) (a) Ploughing with tractor followed by 4 ploughings with bullock and country plough and laddering. (b) Dibbling. (c) $945 \mathrm{lb} . / \mathrm{ac}$. (d) As per treatments. (e) 1. (v) Cowdung at 150 mds /ac. and T.C. at 6130 lb ./ac. applied on 2.10 .1659 . A/S at $242 \mathrm{lb} . / \mathrm{ac}$. applied on 19.12 .1959 , mustard oilcake at 403 lb ./ac. applied on 12.11.1959 and mixed fertilizer at 323 lb ./ac. applied on 15.11.1959. (vi) Local Khasi (medium). (vii) Irrigated. (viii) Hoeing, weeding and earthing-twice. (ix) N.A. (x) 16.3.1960 to 18.3.1960.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. $58(37)$ on page 84.

RESULTS :

(i) $10101 \mathrm{lb} . / \mathrm{ac}$. (ii) $218 \mathrm{lb} . / \mathrm{ac}$. (iii) \mathbf{R} and \mathbf{P} effects are highly significant. Interaction is not significant.
(iv) Av. yield of potato in lb ./ac.

	P_{1}	P_{2}	P_{3}	Mean
R_{1}	12967	11777	7482	10742
R_{2}	12261	10648	9075	10661
R_{3}	10265	9539	6897	8900
Mean	11831	10655	7818	10101

S.E. of any marginal mean	$=44.5 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table	$=77.1 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Potato.
 Site :- Agri: College, Jorhat.

Ref:- As. 57(45).
Type :- 'I'.

1. BASAL CONDITIONS :

(i) (a) N.A. (b) Cucumber. (c) $100 \mathrm{md} . / \mathrm{ac}$. of cowdung. (ii) (a) Sandy loam. (b) pH-4.5. (iii; N.A./ 6.10.1957. (iv) (a) 4 ploughings followed by laddering. (b) Line sowing. (c) N.A. d) $18^{-1} \times 12^{\prime \prime}$. (e) 1 . (v) Cowdung at $50 \mathrm{mds} / \mathrm{ac}$. broadcast after first ploughing. (vi) Majestic (N.P.). (vii, As per treatments. (viii) Hoeing on 1.11.1957 and earthing on 28.12.1957. (ix) N.A. (x) 16.1.1958.
2. TREATMENTS :

2 levels of irrigation : $\mathrm{I}_{0}=0$ and $\mathrm{I}_{1}=10$ irrigations.
Irrigations given in furrows at 5 days interval one acre-inch each time.

3. DESIGN

(i) R.B.D. (ii) (a) 2. (b) N.A. (iii) 2. (iv) (a) and (b) $5^{\prime}-9^{\prime \prime} \times 3^{\prime}-2^{\prime \prime}$. (v) No. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Potato yield. (iv) (a) and (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $10378 \mathrm{lb} . / \mathrm{ac}$. (ii) $1165 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differeace is not significant. (iv) Av. yield of potato in lb./ac.

Treatment	I_{0}	I_{1}
Av. yield	$9089 \quad 11667$	
	S.E./mean	$=824 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Potato (Rabi).
 Ref :- As. 59(52).
 Site :- Govt. Agri. Farm, Jorhat.
 Type :- ' \mathbf{D} '.

Object :-To study the effective doses of different weedicides to control weeds.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Maize. (c) $200 \mathrm{md} . / \mathrm{ac}$. of cowdung. (ii) (a) Sandy loam. (b) N.A. iii) 19.11.1958. (iv) (a) Ploughing and laddering. (b) Dibbling. (c) 10 md . ac. (d) Between lines- 3. (e) -. (v) 200 md./ac. of cowdung. (vi) Shillong. (vii) Unirrigated. (viii) Earthing once. (ix) N A. (x) 27.2.1959.

2. TREATMENTS :

All combinations of (1) and ($2+$ a control
(1) 2 weedicides: $\mathrm{W}_{1}=$ Fernoxone and $\mathrm{W}_{2}=$ Agroxone
(2) 2 concentrations : $\mathrm{C}_{1}=1$ and $\mathrm{C}_{2}=2 \mathrm{lb}$. in 60 gallons of water per acre.
3. DESIGN :
(i) R.B.D.
(ii) (a) 5 .
(b) $85^{\prime} \times 14^{\prime}$.
(iii) 5 . (iv) (a) $17^{\prime} \times 14^{\prime}$.
(b) $15^{\prime} \times 12^{\prime}$. (v) $1^{\prime} \times 1^{\prime}$, \because i) Yes.
4. GENERAL :
(i) Normal. (ii) Ni1. (iii) Potato yield. (iv) (a) 1957-contd. (b) No. (c) Nil. (v) (a) and (b) N.A. vi) and (vii; Nil.
5. RESULTS :
(i) $2409 \mathrm{lb} . / \mathrm{ac}$. (ii) $259 \mathrm{lb} . / \mathrm{ac}$. (iii) Main effect of C is highly significant. Interaction $\mathrm{C} \times \mathrm{W}$ is significant. (iv) Av. yield of potato in $\mathrm{lb} . / \mathrm{ac}$.

Control $=1863 \mathrm{lb} . / \mathrm{ac}$.

	W_{1}	$\mathrm{~W}_{2}$	Mean
C_{1}	2468	2105	2286 C_{2}
2904	2710	2807	
Mean	2686	2407	2546

87

S.E. of any marginal mean	$=81.9 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table	$=115.82 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Potato (Rabi).
Site :- Govt. Agri. Farm, Jorhat.

Ref :- As. 58(54).

Type :- ' ${ }^{\mathbf{D}}$ '.
Object :-To study the effective doses of weedicide to control weeds.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Maize. (c) $200 \mathrm{md} . / \mathrm{ac}$. of cowdung. (ii) (a) Sandy loam. (b) N.A. (iii) 11.11.1958.
(iv) (a) Ploughing and laddering. (b) Dibbling. (c) $10 \mathrm{mds} / \mathrm{ac}$. (d) Between lines-3'. (e) -. (v) 200 md.'ac. of cowdung. (vi) Shillong. (vii) Unirrigated. (viii) Earthing once. (ix) N.A. (x) 9.3.1959.
2. TREATMENTS :

4 concentrations of Fernoxone : $\mathrm{C}_{0}=0, \mathrm{C}_{1}=1, \mathrm{C}_{2}=2$ and $\mathrm{C}_{3}=3 \mathrm{lb}$. in 80 gallons of water per acre.
3. DESIGN :
(i) R.B.D.
(ii) (a) 4 .
(b) $75^{\prime} \times 27^{\prime}$.
(iii) 5.
v) (a) $27^{\prime} \times 20^{\prime}$.
(b) $22^{\prime} \times 15^{\prime}$. (v) N.A.
(vi) Yes.
4. GENERAL:
(i) Normal. (ii) N
(vi) and (vii) Nil.
5. RESULTS :
(i) $1226 \mathrm{lb} . / \mathrm{ac}$. (ii) $193 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. (iv) Av. yield of potato in $\mathrm{Ib} . / \mathrm{ac}$.

Treatment	C_{0}	C_{1}	C_{2}	C_{3}
Av. yield	911	1280	1261	1452
	S.E./mean	$=$	$86.3 \mathrm{lb} . / \mathrm{ac}$.	

Grop :- Potato (Rabi).	Ref :- As. 57(50).
Site :- Govt. Agri. Farm, Jorhat.	Type :- $6 \mathbb{D}$,

Object :-To study the effective doses of weedicide to control weeds.

1. BASAL CONDITIONS :
(i) (a) N.A.
(b) Maize.
(c) Cowdung at $200 \mathrm{mds} . / \mathrm{ac}$. (ii) (a) Sandy loa
(iv) (a) Ploughing and laddering. (b) Line sowing. (c) $10 \mathrm{mds} / \mathrm{ac}$. (d) Between lines-3'. (e)-. (v) Nil. (vi) Shillong. (vii) Unirrigated. (viii) Earthing once. (ix) N.A. (x) 20.2.1958.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 58(54) above.
RESULTS :
(i) $1825 \mathrm{lb} . / \mathrm{ac}$. (ii) $494 \mathrm{Ib} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of potato in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	$\mathrm{C}_{\mathbf{0}}$	$\mathrm{C}_{\mathbf{1}}$	C_{2}	C_{3}
Av. yield	1478	1782	2046	1993
	S.E. $/$ mean	$=$	$221 \mathrm{lb} . / \mathrm{ac}$.	

Crop:- Potato (Rabi).
 Centre :- Jorhat (c.f.).

> Ref :- As. $57(48)$.
> Type :- \mathfrak{D}^{\prime}.

Obiect:-To find out the most economic and effective way of controlling different weeds associated with Potato.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) $A h u$ paddy. (c) Cowdung at $200 \mathrm{mds} / \mathrm{ac}$. (ii) Sandy loam. (iii. Cowdung at 250 mds/ac. (iv) Shillong. (v) (a) Ploughing and laddering. (b) Dibbling. (c) to (e) N.A. (vi) 6.11.1957. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 3.3.1958.
2. TREATEMENTS :
3. Control.
4. Local method of weeding.
5. Application of weedicide 5 days after planting.
6. Application of weedicide 10 days after planting.
7. Application of weedicide 5 days after planting+cultural method of weeding.
8. Application of weedicide 10 days 4 fter planting + cultural method of weeding.

Weedicide used-. 6 oz ./ac. of Fernox one in water.
3. DESIGN :
(i) and (ii) 5 biocks of 6 plots each were selected from the agreeable cultivators in the same locality. (iii) (a) $13^{\prime} \times 13^{\prime}$. (b) $11 \times 11^{\prime}$. (iv', Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Yield of tuber. (iv) (a), 1957-contd. (b) No. 'c' Nil. (v) (a, and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $3582 \mathrm{lb} . / \mathrm{ac}$. (ii) $1269 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of tuber in lb./ac.

Treatment	$\mathbf{1}$	2	3	4	5	6
Av. yield	2592	3312	2880	3924	4140	4644
	S.E./mean	$=$	$567 \mathrm{lb} . / \mathrm{ac}$.			

Crop :- Potato (Rabi).	Ref :- As. $58(48)$.
Centre :- Jorhat (c.f.).	Type :- 'D'.

Object:-To find out the mcst economic and effective way of controlling weeds associated with Potato.

1. BASAL CONDITIONS:
(i) (a) N.A. (b) Ahu Paddy. (c) Cowdung at $250 \mathrm{mds} / \mathrm{ac}$. (ii) Sandy loam. (iii) Cowdung at 200 mds/ac. (iv) Shillong. (v) (a) Ploughing and laddering. (b) Dibbling. (c) to (e) N.A. (vi; 3.11.1958. (vii) Unirrigated. (viii) and (ix) N.A. (x) 28.1.1959.
2. TREATMENTS :

Same as in expt. no. $57(48)$ on page 87.
3. DESIGN :
(i) and (ii) 5 blocks of 6 plots each were selected from the agreeable cultivators in the same locality. (iii) (a) $13^{\prime} \times 13^{\prime}$. (b) $11^{\prime} \times 11^{\prime}$. (iv) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Tuber yield. (iv) (a) 1957-contd. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 7128 lb. /ac. (ii) $828 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are significant. (iv) Av. yield of tuter in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	1	2	3	4	5	6
Av. yield	6120	7344	6480	7200	7704	7920°
	S.E. $/$ mean	$=$	370	lb ./ac.		

```
Crop :- Potato (Rabi). Ref :- As. 59(45).
Ceratre :- Jorhat (c.f.)
Type :- `D'.
```

Object:-To find out the most economic and effective way of controlling different weeds associated with Potato.

1. BASAL CONDITIONS :

(i) (a) N.A. (b) Ahu Paddy. (c) Cowdung at $200 \mathrm{mds} / \mathrm{ac}$. (ii) Sandy loam, (iii) Cowdung at $200 \mathrm{mds} / \mathrm{ac}$. (iv) Shillong. (v) (a) Ploughing and laddering. (b) Dibbling. (c) to (e) N.A. (vi) 5.11.1959. (vii) Unirrigated. (viii) and (ix) N.A. (x) 12.2.1960.
2. TREATMENTS :

7 methods of weeding: $\mathrm{M}_{0}=$ Control (no weeding), $\mathrm{M}_{1}=$ Local method of weeding, $\mathrm{M}_{2}=$ Application of weedicide 5 days after planting, $\mathrm{M}_{3}=$ Application of weedicide 10 days after planting, $\mathrm{M}_{4}=$ Application of weedicide 5 days after planting+cultural method of weeding, $\mathrm{M}_{5}=$ Application of weedicide 10 days after planting+cultural method of weeding and $\mathrm{M}_{6}=$ Cultural method of weeding.
Weedicide used- $16 \mathrm{oz} . / \mathrm{ac}$. of Fernoxone in water.
3. DESIGN :
(i) and (ii) 5 blocks were selected from the agreeable cultivators in the same locality. (iii) (a) $13^{\prime} \times 13^{\prime}$. (b) $11^{\prime} \times 11^{\prime}$. (iv) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Tuber yield. (iv) (a) to (c) 1957 -contd. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 7264 lb .ac. (ii) -476 lb ./ac. (iii) Treatment differences are highly significant. (iv) Av. yield of tuber in 1 b ./ac.

Treatment	\mathbf{M}_{0}	\mathbf{M}_{1}	$\mathbf{M}_{\mathbf{2}}$	\mathbf{M}_{3}	\mathbf{M}_{4}	\mathbf{M}_{5}	\mathbf{M}_{6}	
Av. yield	6120	7398	6444	7182	7740	7938	8028	
	S.E./mean	$=$	$213 \mathrm{lb} . / \mathrm{ac}$.					

Crop:- Potato (Rabi).
Ref :- As. 58(47).
Centre :- Johrat (c.f.).
Type :- 'D'.

Object:-To find out the effect of pesticides on Potato cut-worms.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Ahu Paddy. (c) Cowdung at $200 \mathrm{mds} / \mathrm{ac}$. (ii) Sandy loam. (iii) Cowdung at $150 \mathrm{mds} / \mathrm{ac}$. (iv) Shillong. (v) (a) Ploughing and laddering. (b) Dibbling. (c) to (c) N.A. (vi) 7.11.1958. (vii) Unirrigated. (viii) and (ix) N.A. (x) 17, 18.2.1959.

2. TREATMENTS:

1. Control.
2. Application of Aldrex $5 \% \mathrm{D}$ at 15 lb ./ac.
3. Application of Gam $\mathrm{D}_{0} 25$ at 15 lb ./ac.
4. Application of Gammexane W.D.P. at $1 \mathrm{lb} . / \mathrm{ac}$. in 30 gallons of water per acre.
5. Application of Dieldrex at $1 \mathrm{lb} . / \mathrm{ac}$. in 30 gallons of water per acre.
6. Application of Guesarol D.D.T. at 1 lb ./ac. in 30 gallons of water per acre.
7. DESIGN :
(i) and (ii) 5 blocks of 6 plots each were selected from the agreeable cultivators in the same locality. (iii)
(a) $24^{\prime} \times 17^{\prime}$. (b) $22^{\prime} \times 15^{\prime}$. (iv) Yes.
8. GENERAL:
(i) Normal. (ii) Potato cut-worm. Control measures as per treatments. (iii) Tuber yield. (iv) (a) to (c) 1958-contd. (v) (a) and (b) N.A. (vi) and (vii) Nil.
9. RESULTS :
(i) 10894 lb ./ac. (ii) 103 lb .'ac. (iii) Treatment differences are highly significant. (iv) Av. yield of tuber in lb.jac.

Treatment	1	2	3	4	5	6
Av. yield	9557	11642	10058	10560	11035	12514
	S.E./mean	$=$	$46 \mathrm{lb} . / \mathrm{ac}$.			

Crop :- Potato (Rabi).	Ref :- As. 59(47),
Centre :- Jorhat (c.f.).	Type :- $\mathbf{C D}^{\prime}$.

Object:-To find out the effect of pesticides on Potato cut-worm.
. BASAL CONDITIONS :
(i) (a) N.A. (b) Ahu Paddy. (c) Cowdung at 250 mds ,ac. (ii). Sandy loam. (iii) Cowdung at 200 mds.'ac. (iv) Shillong. (b) (a) Ploughing and laddering. (b) Dibbling. (c) to (e) N.A. (vi) 11.11.1959. (vii) Unirrigated. (viii) and (ix) N.A. (x) $16,17.1 .1960$.

2. TREATMENTS:

1. Control.
2. Application of Aldrex $5 \% \mathrm{D}$ at $15 \mathrm{lb} . / \mathrm{ac}$.
3. Application of Gam $D_{0} 25$ at $15 \mathrm{Jb} . / \mathrm{ac}$.
4. Application of Gammexane W.P.D. at 1 lb . in 30 gallons of water per acre.
5. Application of Endrex 33 c.c. in 30 gallons of water per acre.
6. Application of Guesarol D.D.T. at 1 lb . in 30 gallons of water per acre.
7. DESIGN :
(i) and (ii) 5 blocks of 6 plots each were selected from the agreeable cultivators in the same local:ty. (iii) (a) $24^{\prime} \times 17^{\prime}$. (b) $22^{\prime} \times 15^{\prime}$. (iv) Yes.
8. GENERAL :
(i) Normal. (ii) Potato cut-worm. Control measures as per treatments. (iii) Tuber yield. (iv) (a) to (c) 1958-contd. (v) (a) and (b) N.A. (vi) and (vii) Nil.
9. RESULTS:
(i) $10371 \mathrm{lb} . / \mathrm{ac}$. (ii) $251 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment diferences are highly significant. (iv) Av. yield of tuber in lb, ac.

Treatment	1	2	3	4	5	6
Av. yield	8633	11141	10058	11299	11774	9319
	S.E. $/$ mean	$=$	$112 \mathrm{lb} . / \mathrm{ac}$.			

Crop :- Cabbage (Rabi).
 Site :- Govt. Agri. Farm, Jorkat.

Object :-To study the effect of A/S on Cabbage in acid soil.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Ahu Paddy. (c) 150 md ./ac. of cowdung. (ii) (a) Old alluvial acid soil. (b) N.A. (iii) 30, 31.10.1956. (iv) (a) 5 hoeings. (b) Transplanting. (c) - . (d) $2^{\prime} \times 1^{\frac{1}{\prime}}$. (e) 1 . (v) 150 md ./ac. of cowdung. (vi) Drum head (late). (vii) Irrigated. (viii) 1 mulching and 4 hoeings. (ix) 1.27° (x) 12.1.1957 to 9.3.1957.
2. TREATMENTS :

4 levels of N as $A / S: N_{0}=0, N_{1}=50, N_{2}=100$ and $N_{3}=150 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) $24^{\prime} \times 72^{\prime}$. (iii) 3. (iv) (a) $24^{\prime} \times 18^{\prime}$. (b) $20^{\prime} \times 16^{\prime}$. (v) $2^{\prime} \times 1^{\prime}$. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Yield of cabbage. (iv) (a) 1956-1958. (b) Yes. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $11326 \mathrm{lb} . / \mathrm{ac}$. (ii) $3455 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of cabbage in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	N_{0}	$\mathrm{~N}_{1}$	$\mathrm{~N}_{2}$	$\mathrm{~N}_{3}$
Av. yield	12302	13163	10744	9093
	S.E. $/$ mean	$=$	$1995 \mathrm{lb} . / \mathrm{ac}$.	

Crop:- Gibblage (Rabi).
Ref:- 57(40).
Site :- Govt. Agri. Farm, Jorhat.
Type :- ‘'M’.

Object :-To study the effect of A/S on Cabbage in acid soil.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) $A h u$ Paddy. (c) $150 \mathrm{md} . / \mathrm{ac}$. of cowdung. (ii) (a) Old alluvial acid soil. (b) N.A. (iii) 8.11.1957. (iv) (a) 5 hoeings. (b) Transplanting. (c) 一. (d) $2^{\prime} \times 11^{\prime}$. (e) 1. (v) $150 . \mathrm{md} / \mathrm{ac}$. of cowdung. (vi) Drum head (late). (vii) Irrigated. (viii) Mulching and hoeing. (ix) $2.12^{\prime \prime}$. (x) 19.1.1958 to 3.3.1958.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 56(42) on page 90.
5. RESULTS :
(i) $23441 \mathrm{lb} . / \mathrm{ac}$. (ii) $7132 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of cabbage in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	N_{0}	$\mathrm{~N}_{1}$	$\mathrm{~N}_{2}$	$\mathrm{~N}_{3}$
Av. yield	17860	26883	28278	20744
	S.E./mean	$=$	$4118 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Cabbage (Rabi).
 Site :. Govt. Agri. Farm, Jorhat.

Ref:- As. 58(35).
Type:- ${ }^{\mathbf{M}}$ '
Object :-To study the effect of A / S on Cabbage in acid soll.

1. BASAL CONDITIONS :
(i) (a) N.A. • (b) Ahu Paddy. (c) $150 \mathrm{md} . / \mathrm{ac}$. of cowdung, (ii) (a) Old alluvial acid soil. (b) N.A. (iii) 7.11 .1958 . (iv) (a) 5 hoeings. (b) Transplanting. (c) - . (d) $2^{\prime} \times 1^{1^{\prime}}$. (e) 1. (v) 150 md ./ac. of cowdung. (vi) Drum head (late). (vii) Irrigated. (viii) Mulching and 4 hoeings. (ix) 1.02". (x) 28.2.1959 to 13.3.1959.
2. TREATMENTS to 4: GENERAL:

Same as in expt. no. 56(42) on page 90.
5. RESULTS :
(i) $16813 \mathrm{lb} . / \mathrm{ac}$. (ii) $7454 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of cabbage in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	N_{0}	$\mathrm{~N}_{1}$	$\mathrm{~N}_{2}$	$\mathrm{~N}_{3}$
Av. yield	11744	20116	20952	14441
	S.E. $/$ mean			$4304 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Cauliflower (Rabi).
Ref :- As. 57(47).
Site :- Agri. College: Jorhat.
Type :- 'M'.

Object :-To find out suitable doses of N and P for Cauliflower.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Cucumber. (c) Cowdung at 200 mds./ac. (ii) (a) Sandy loam. (b) pH-4.5. (iii; 5.11 .1957.
(iv) (a) Ploughing once with tractor, 4 ploughings with bullo:k and laddering. (b) Transplanted. (c) -
(d) $30^{\prime \prime} \times 24^{\prime \prime}$. (e) 1 . (v) Cowdung at 200 mds ./ac. and T.C. at 18 lb .;plut. (vi) Banaras (late;. ivii) Irrigated. (viii) 2 hoeings and 1 earthing up. (ix) N.A. (x) Later half of February.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=20 \mathrm{lb}$./ac.
(2) 5 levels of N as $A / S: N_{0}=0, N_{1}=20, N_{2}=40, N_{2}=60$ and $N_{4}=80 \mathrm{lb}$.;ac.
3. DESIGN :
(i) R.B.D. Fact. (ii) (a) 10 . (b) $15^{\prime} \times 100^{\prime}$. (iii) 4 . (iv) (a) and (b) $15^{\prime} \times 10^{\prime}$. (v) Nil. (vi, Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Yield of cauliflower. (iv) (a) 1957-1958. (b) Yes. (c, Nil. (b) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $2774 \mathrm{lb} . / \mathrm{ac}$. (ii) 973 lb ./ac. (iii) No effect is significant. (iv) Av. yield of cauliflower io lb, ac.

	N_{0}	N_{1}	N_{2}	N_{3}	N_{4}	Mean
P_{0}	2202	2713	2786	2737	2891	2665
P_{1}	2046	3030	3077	3116	3147	2883
Mean	2124	2872	2930	2927	3019	2774
S.E. of N marginal mean S.E. of P marginal mean S.E. of body of table				$=34$ $=217$ $=486$	b./ac. b./ac. b./ac.	

Crop :- Cauliflower ($R a b i$).	Ref :- As. 58(40).
Site :- Agri. College, Jorhat.	Type :- 'M'.

Object:-To find out suitable doses of N and P for Cauliflower.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Cucumber. (c) Nil. (ii) (a) Sandy loam. (b) $\mathrm{pH}-4.5$. (iii) 5.11 .1958 . (iv) (a) Ploughing once with tractor, 3 ploughings with bullock and laddering. (b) Transplanted. (c) -. (d) $30^{\circ} \times 24^{\circ}$. (e) 1. (v) Cowdung at $200 \mathrm{mds} . / \mathrm{ac}$. and T.C. at $1 \mathrm{md} / \mathrm{plot}$. (vi) Banaras (late). (vii) Irrigated. (viii) 2 hoeings and earthing. (ix) N.A. (x) 23.12.1958 to 3.2.1959.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 57:47) above.
5. RESULTS :
(i) $7355 \mathrm{lb} . / \mathrm{ac}$. (ii) $1443 \mathrm{lb} . / \mathrm{ac}$. (iii) Only N effect is significant. (iv) Av. yield of cauliflower in lb , atc.

	N_{0}	N_{1}	N_{2}	N_{3}	N_{4}	Mean
P_{0}	4792	7532	7750	8525	10006	7721
P_{1}	4728	6670	8186	7020	8436	7008
- Mean	4760	7101	7969	7773	9221	7365
S.E. of N marginal mean S.E. of P marginal mean S.E. of body of table			$=510 \mathrm{lb} / \mathrm{ac}$.			
			$=323 \mathrm{fb} / \mathrm{ac}$.			
			$=722 \mathrm{lb} . / \mathrm{ac}$.			

Crop :- Brinjal (Rabi).

Site :- Agri. College, Jorhat.

Ref :- As. 58(46).

Type :- ' \mathbf{M} '.

Object :-To flnd out suitable dose of different fertilizers for Brinjal.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Dhaincha. (c) Nil. (ii) (a) Sandy loam. (b) N.A. (iii) 30.9.1958. (iv) (a) Ploughing once with tractor, 3 ploughings with bullocks and laddering. (b) Transplanting. (c) -. (d) $2 \frac{1}{2}^{\prime} \times 2^{\prime}$. (e) 1 . (v) Cowdung at $200 \mathrm{mds} / \mathrm{ac}$. and $\mathrm{P}_{2} \mathrm{O}_{5}$ at $40 \mathrm{lb} . / \mathrm{ac}$. (vi) Local. (vii) Irrigated. (viii) 2 weedings and one earthing. (ix) N.A. (x) 1.12.1958 to 12.3.1959.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 5 sources of $N: F_{1}=A / S, \quad F_{2}=T . C ., \quad F_{3}=$ Mustard oilcake, $F_{4}=A / S$ and T.C. in 1:1 ratio and $F_{5}=\mathrm{A} / \mathrm{S}$ and Mustard oilcake in 1:1 ratio.
(2) 3 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=50$ and $\mathrm{N}_{2}=100 \mathrm{lb}$./ac.
(3) 2 levels of $\mathrm{K}_{2} \mathrm{O}$ as wood ash : $\mathrm{K}_{1}=40$ and $\mathrm{K}_{2}=80 \mathrm{lb}$./ac.
3. DESIGN:
(i) Fact. in R.B.D. (ii) (a) 30 . (b) $60^{\prime} \times 60^{\prime}$. (iii) 3. (iv) (a) and (b) $10^{\prime} \times 12^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Yield of brinjal. (iv) (a) to (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $15394 \mathrm{lb} . / \mathrm{ac}$. (ii) 5035 lb ./ac. (iii) Main effect of N alone is highly significant. (iv) Av. yield of brinjal in lb./ac.

| S.E. of N marginal mean | $=919 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- | ---: |
| S.E. of F marginal mean in $F \times N$ table | $=1187 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of F marginal mean in $F \times K$ table | $=1453 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of K marginal mean | $=751 \mathrm{lb} / \mathrm{ac}$. |
| S.E. of body of $F \times N$ table | $=2056 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of $K \times N$ table | $=1300 \mathrm{lb} . / \mathrm{ac}$. |
| S.E. of body of $K \times F$ table | $=1678.1 \mathrm{~b} / \mathrm{ac}$. |

```
Crop :- Tomato (Rabi).
Site :- Govt. Agri. Farm, Jorhat.
Ref:- As. 56(40).
Type :- 'M'.
```

Object:-To study the effect of P on Tomato in acid soil.

1. BASAL CONDITIONS :
(i) a) N.A. (b) Ahu Paddy. (c) Cowdung at 150 mds./ac. (ii) (a) Old alluvial acid soil. (b) N.A. (iii) 12.11.1956. (iv) (a) 5 ploughings followed by laddering. (b) Transplanting. (c), -, (d $3^{\prime} \times 3^{\prime}$. (e) 1. (v) Cowdung at 150 mds 'ac. (vi) N.A. (vii) Irrigated. (viii) Weeding and hoeing. (ix) 1.34°. (x) 11.2.1957 to 29.3.1957.
2. TREATMENTS :

3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{0}=0, \mathrm{P}_{1}=60$ and $\mathrm{P}_{2}=120 \mathrm{lb}$./ac.
3. DESIGN :
(i) R.B D. (ii) (a) 3.
(b) $17^{\prime} \times 33^{\prime}$.
(iii) 3 .
(iv) (a) and (b) $17 \times 11^{\prime}$.
(v) Nil. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A.
(iii) Tomato yield. (iv) (a) 1956-1959.
(b) Yes.
(c) Nil.
(r) 'a) and
b) Nil. (vi) Nil. (vii) Expt, was conducted by Agri. Chemist.
5. RESULTS :
(i) 22051 lb ./ac. (ii) $5783 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yie!d of tomato in lb. lac .

Treatment	P_{0}	P_{1}	P_{2}
Av. yield	22109	23286	20758
	S.E./mean	$=$	$3339 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Tomato (Rabi).
Site :- Govt. Agri, Farm, Jorhat.

Ref:- As. 57(41).
Type :- ' ${ }^{\mathbf{M}}$ '.

Object:-To study the effect of P on Tomato in acid soil.

1. BASAL CONDITIONS :
(i) and 'ii' Same as in expt. no. 56(40; above. (iii) 28.10.1957. (iv) to (viii) Same as in expt. no. 56(40) above. (ix) 2.7 i' $^{\prime \prime}$. (x) 13.2.1958 to 16.3.1958.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 56;40; above.
5. RESULTS :
(i) $19116 \mathrm{lb} . j \mathrm{ac}$. 'ii) $1053 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of tomato in lb.fac.

Treatment	P_{3}	P_{1}	P_{2}
Av. yield	18171	19553	19624
	S.E./mean	$=$	$608 \mathrm{lb}, \mathrm{ac}$.

```
Grop :- Tomato (Rabi).
Site :- Govt. Agri. Farm, Jorhat.
```

Ref :- As. 58(36).
Type :- 'M'.
Object :- To study the effect of P on Tomato in acid soi.

1. BASAL CONDITIONS :

(i) (a) N.A. (b) Ahu Paddy.. (c) Cowdung at $150 \mathrm{mds} / \mathrm{ac}$. (ii) (a) Old alluvial acid soil. (b) N.A. (iii)
12.11.1958. (iv) (a) Five ploughings followed by laddering. (b) Transplanting. (c) - . (d) $3^{\prime} \times 3^{\prime}$. (e) 1 .
(v) Cowdung at $150 \mathrm{mds} / \mathrm{ac}$. (vi) N.A. (vii) Irrigated. (viii) Weeding and hoeing. (ix) $1.36^{\prime \prime}$. (x) 21.2.1959 to 27.31959 .
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 56(40) on page 94.
5. FESULTS:
(i) $12110 \mathrm{lb} . / \mathrm{ac}$. (ii) $3171 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of tomato in lb./ac.

Trea'ment	P_{0}	P_{1}	P_{2}
Av. yield	8409	$1: 881$	14041
	S.E./mean	$=$	$1831 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Tomato (Rabi).	Ref:- As. $59(35)$.
Site :- Govt. Agri. Farm, Jorhat.	Type :- ${ }^{\prime} \mathbf{M}$.

Object :-To study the effect of P on Tomato in acid soil.

1. BASAL CONDITIONS :
(i) (a) N.A. (b)'Ahu Paddy. (c) Cowdung at $150 \mathrm{mds} / \mathrm{ac}$. (ii) (a) Old alluvial acid soil. (b) N.A. (iii)
26.10.1959. (iv) (a) Five ploughings followed by laddering. (b) Transplanting. (c)—. (d) $3^{\prime} \times 3^{\prime}$. (e) 1 . (v) Cowdung at $150 \mathrm{mds} / \mathrm{ac}$. (vi) N.A. (vii) Irrigated. (viii) Weeding and hoeing. (ix) $2.08^{\prime \prime}$. (x) 32.1960 to 26.2.1960.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 56(40) on page 94.
5. RESULTS :
(i) 4087 lb ./ac. (ii) 503 lb ./ac. (iii) Treatment differences are significant. (iv) Av. yield of tomato in lb ./ac.

Treatment	P_{0}	P_{1}	P_{2}
Av. yield	3184	4458	4617
	S.E. $/$ mean	$=$	$291 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Sugarcane.	Ref :- As. 59(62).
Site :- Sugarcare Res. Stn., Burlikson.	Type :- ‘M'.

Object:-To study the effect of P in presence of N, under limed and unlimed conditions.

1. BASAL CONDITIONS :
(i) (a) Sugarcane. (b) Fallow. (c) Nil. (ii) (a) Sandy loam. (b) Refer below*. (iii) 28.1.1959 to 5.2.1959. (iv) (a) Dne ploughing followed by two harrowings. (b) Planted in trenches $9^{\prime \prime}$ deep (c) N.A. (d) Between rows-4'. (e) N.A. (v) Nil. (vi) CO-419 (late). (vii) Unirrigated. (viii) Two weedings and 2 earthings. (ix) $66.31^{\prime \prime}$. (x) 8.3.1960 to 12.3.1960.
2. TREATMENTS :

Main-plot treatments :

2 levels of slaked lime : $\mathrm{L}_{0}=0$ and $\mathrm{L}_{1}=12 \mathrm{mds}$./ac.

| $*$ Coarse Sand 5.1% | Fine Sand- | 39.6\% | Silt 36.0% | Clay- 12.0% | Moisture-6.0\%, | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{N}_{2}-.173 \%$ | $\mathrm{P}_{2} \mathrm{O}_{5}$ | 0.003% | $\mathrm{~K}_{2} \mathrm{O}-.004 \%$ | pH 5.1 | $\mathrm{pH}\left(\mathrm{KNO}_{3}\right)-4.2$. | |

Sub-plot treatments :

All combinations of $\{1$ and \{2\}
(1) 2 sources of 160 Ib . 'ac. of $\mathrm{N}: \mathrm{S}_{1}=$ F.Y.M. and $\mathrm{S}_{2}=\mathrm{A} / \mathrm{S}$.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{0}=0, \mathrm{P}_{1}=60$ and $\mathrm{P}_{2}=120$ ،..'ac.
3. DESIGN
(i) Split-plot. (ii) (a', 2 main-plots; block; 6 sub-plots'main-plot. (b) $98^{\prime} \times 192^{\prime}$. (iii), 4 . (iv, ;a) 49×32
(b) $45^{\prime} \times 24^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL:
(i) Fair. (ii) Nil. (iii) Sugarcane yield. (iv) (a) $1959-$ N.A. (b) No. (c) Nil. (v) (a) and (b) N.A. (v) and (vii) Nil.
5. RESULTS :
(i) 14.95 tons/ac. (ii) (a) 1.03 tons/ac. (b) 3.73 tons/ac. (iii) None of the effects is significant, (iv) Av. yield of cane in tonsiac.

	P_{0}	F_{1}	$\mathrm{P}_{\boldsymbol{z}}$	Mean	S_{1}	S_{2}
L_{0}	15.01	14.47	13.21	14.23	15.29	13.18
\mathbf{L}_{1}	13.71	17.81	15.48	15.67	15.64	15.69
Mean	14.36	16.14	14.35	14.95	15.46	14.44
S_{1}	13.86	16.58	15.94			
S_{2}	14.86	15.70	12.75			

S.E. of difference of two

Crop :- Sugarcane.
Site :- Sugarcane Res. Stn., Jorhat.

Ref :- As. 54(15).
 Type :- ' \mathbf{M} '.

Object:-To study the effect of organic and inorganic manures and their combinations under limed and unlimed conditions.

1. BASAL CONDITIONS :
(i) (a) Sugarcane-ratoon-Fallow. (b) Fallow. (c) Nil. (ii) (a) Reddish sandy loam of old allu viam. (b) N.A. (iii) 19.4 .1954 to 23.4.1954. (iv) (a) to (e) N A. (v; Cowdung at 100 mds ;ac. (vi) CO - 419 (late:. (vii) Unirrigated. (viii) N.A. (ix) 72.60^{*}. (x) 1.3.1955 to 8.3.1955.

2. TREATMENTS :

Main-plot treatments :
2 levels of lime : $\mathrm{L}_{0}=0$ and $\mathrm{L}_{1}=12 \mathrm{mds} / \mathrm{ac}$. of slaked line.
Sub-plot treatments :
7 manurial doses : $\mathrm{M}_{0}=$ Centrol, $\mathrm{M}_{1}=150 \mathrm{md}$.'ac. of cowdung, $\mathrm{M}_{2}=300 \mathrm{md}$./ac. of cowdung, $\mathrm{M}_{3}=300$ lb ac . of $\mathrm{A}^{\prime} / \mathrm{S}, \mathrm{M}_{4}=600 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{A}: \mathrm{S}_{5}=150 \mathrm{lb}$. ac . of $\mathrm{A} . \mathrm{S}+75 \mathrm{md} . / \mathrm{ac}$. of cowdung and $M_{6}=300 \mathrm{lb}$.'ac. of $A: S+150 \mathrm{md}$. ac. of cowdung.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/block and 7 sub-plots/main-plot. (b) $49^{\prime} \times 224^{\prime}$. (iii) 3 . (iv) $49^{\prime} \times 32^{\prime}$. (b) $45^{\prime} \times 24^{\prime}$. , ,' N.A. 'V.; Yes.
4. GENERAL :
(i) Fair. (ii N.A. (iii) Stripped cane yield. (iv) (a) 1953-1955. (b) and (c) No. (v) (a) and , b, N.A. (vi) and (vii, Nil.

5. RESULTS :

(i) 16.17 tons/ac. (ii) (a) 5.55 tons/ac. (b) 2.16 tons/ac. (iii) M effect is significant. (iv) Av. yield of cane in tons/ac.

	M_{0}	M_{1}	M_{2}	M_{3}	M_{4}	M_{5}	M_{6}	Mean
L_{0}	11.40	16.00	15.72	14.19	15.07	17.27	19.85	15.64
L_{1}	14.75	14.89	19.55	16.15	18.35	15.84	17.32	16.71
Mean	13.07	15.50	17.64	15.17	16.71	16.56	18.58	16.17

S.E. of difference of two

1. L marginal means $\quad=1.71$ tons/ac.
2. M marginal means $=1.25$ tons/ac.
3. M means at the same level of $\mathrm{L}=1.76$ tons/ac.
4. L means at the same level of $M=2.87$ tons/ac.

Crop :- Sugarcane.

Site :- Sugarcane Res. Stn.,' Jorhat.

Ref :- As. 55(28).

Type :- ${ }^{\mathbf{~}} \mathbf{M}$ '.

Object :-To study the effect of organic and inorganic manures and their combinations under limed and unlimed conditions.

1. BASAL, CONDITIONS :

(i) (a) Sugarcane-ratoon-Fallow. (b) Fallow. (c) Nil. (ii) (a) Reddish sandy loam of old alluvium. (b) N.A. (iii) 17.2.1955 to 24.2.1955. (iv) (a) 1 ploughing followed by 2 harrowings. (b) Planted in trenches $7^{\prime \prime}$ deep. (d) Between rows-4'. (e) N.A. (v) Cowdung at $100 \mathrm{mds} / \mathrm{ac}$. (vi) CO-419 (late). (vii) Unırrigated. (viii) Two weedings and earthings. (ix) $78.83^{\prime \prime}$. (x) 4.4.1956 to 10.4.1956.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 54(15) on page 96.
4. GENERAL :
(i) Fair. (ii) Nil. (iii) Stripped cane yield. (iv) (a) 1953-1955. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULT'S:
(i) 17.28 tons/ac. (ii) (a) 4.58 tons/ac. (b) 2.32 tons/ac. (iii) None of the effects is significant. (iv) Av. yield of cane in tons/ac.

	\mathbf{M}_{0}	\mathbf{M}_{1}	$\mathbf{M}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{3}}$	$\mathbf{M}_{\mathbf{4}}$	$\mathbf{M}_{\mathbf{5}}$	\mathbf{M}_{6}	Mean
$\mathrm{L}_{\mathbf{0}}$	15.30	16.44	18.48	17.26	18.74	17.20	16.57	17.14
\mathbf{L}_{1}	15.89	16.77	18.22	17.00	17.74	16.26	20.08	17.42
Mean	15.60	16.60	18.35	17.13	18.24	16.73	18.33	17.28

S.E. of difference of two

1. L marginal means $\quad=1.41$ tons/ac.
2. M marginal means $=\quad .34$ tons/ac.
3. M means at the same level of $L=1.89$ tons/ac.
4. \mathbf{L} means at the same level of $\mathrm{M}=2.25$ tons/ac.

Crop :- Sugarcane.

Site :- Sugarcane Res. Stn., Jorhat.
Ref :- As. 56(25).
Type :- ' M '.
Object :-To study the best method and time for application of N as F.Y.M.

1. BASAL CONDITIONS :
(i) (a) Sugarcane-ratoon-Fallow. (b) Fallow. (c) N.A. (ii) Reddish sandy loam of old alluvium (b) N.A. (iii) 21 st to 28 th March, 1956. (iv) (a) 1 ploughing followed by 2 harrowings. (b) Planed in trenches 9° deep. (c) N.A. (d) Between lines-4'. (e) N.A. (v) Nil. (vi) CO-419. (vii) Unirrigated. (viii) 2 wsedings and 2 earthings. (ix) $72.75^{\prime \prime}$. (x) 19 th to 25 th March, 1957.
2. TREATMENTS :
$\mathrm{T}_{1}=160 \mathrm{lb}$./ac. of N broadcast on 25 th January, 1956.
$\mathrm{T}_{2}=160 \mathrm{lb} . / \mathrm{ac}$. of N broadcast on 30th June, 1956.
$\mathrm{T}_{3}=160 \mathrm{lb}$. ac. of N applied in trenches on 31st January, 1956.
$\mathrm{T}_{4}=160 \mathrm{lb} . / \mathrm{ac}$. of N applied in trenches on 21 st and 22nd March, 1956.
$\mathrm{T}_{5}=80 \mathrm{lb}$.'ac. of N applied in trenches on 14 th Feb., 1956 and $80 \mathrm{lb} . / \mathrm{ac}$. of N applied on 19 th and 20 th June, 1956 along with 1st earthing.
N applied as F.Y.M.
3. DESIGN :
(i) R.B.D.
(ii) (a) 5 .
(b) N.A.
(iii) 6.
(iv)
(a) $49^{\prime} \times 32^{\prime}$.
(b) $45^{\prime} \times 32^{\prime}$.
(v) and (vi) Yes.
4. GENERAL :
(i) Fair. (ii) N.A. (iii) Stripped cane yield. (iv) (a) 1956-1957. (b) and (c) No. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) 14.89 tons/ac. (ii) 2.60 tons/ac. (iii) Treatment differences are highly significant. (iv) Av. yield cf cane in tons $/ \mathrm{ac}$.

Treatment	T_{1}	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$	$\mathrm{~T}_{4}$	$\mathrm{~T}_{5}$
Av. yield	11.62	13.78	17.59	15.68	15.79
	S.E./mean	$=$	1.06 tons/ac.		

Crop :- Sugarcane.	Ref :- As. $\mathbf{5 7 (2 6) .}$
Site :- Sugarcane Res. Stn., Jorhat.	Type :- $\mathbf{' M}^{\prime}$,

Object :-To study the best method and time for application of N as F.Y.M.

1. BASAL CONDITIONS:
(i) (a) Sugarcane-ratoon-Fallow. (b) Fallow. (c) N.A. (ii) (a) Reddish sandy loam of old alluvium. (b N.A. (iii) 28th March to 4th April 1957. (iv) (a) 1 ploughing followed by 2 harrowings. (b Planted. in 9^{\prime} deep trenches. (c) N.A. (d) Between lines-4'. (e) N.A. (v) Nil. (vi; CO-419. (vii) Cairrigated (viii) 2 weedings and 2 earthings. (ix) $91.47^{\prime \prime}$. (x) 6th to 10 th April, 1958.
2. TREATMENTS :
$\mathrm{T}_{1}=160 \mathrm{lb} . \mathrm{ac}$. of N broadcast on 21 st Feb., 1957.
$\mathrm{T}_{2}=163 \mathrm{lb}$.'ac. of N broadcast on 21st and 22nd Feb., 1957.
$\mathrm{T}_{3}=160 \mathrm{ib}$. ac. of N applied in trenches on 20th Feb., 1957.
$\mathrm{T}_{4}=160 \mathrm{lb}$. ac. of N applied in trenches on 28th March, 1957.
$\mathrm{T}_{5}=80 \mathrm{lb}$. ac . of N applied in trenches on 5 th March, 1957 and $80 \mathrm{lb} . / \mathrm{ac}$. of N applied on 11th July, 1957 along with 1 st earthing.
Source of N is N.A.
3. DESIGN:
(i) R.B.D.
(ii) $(a) 5$.
(b) N.A.
(iii) 6 . (iv) (a) $49^{\prime} \times 32^{\prime}$.
(b) $45^{\prime} \times 32^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL:
(i) Fair. (ii) N.A. (iii) Stripped ?cane yield. (iv) (a) 1956-1957. (b) and (c) No. (v) (a, and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) 9.49 tons/ac. (ii) 1.95 tons/ac. (iii) Treatment differences are not significant. (iv) Av. yield of cane in tons/ac.

Treatment	T_{1}	$\mathrm{~T}_{\mathbf{2}}$	T_{3}	$\mathrm{~T}_{\mathbf{4}}$	T_{5}
Av. yield	$\mathbf{1 0 . 0 6}$	8.72	9.69	8.18	10.78
	S.E./mean	$=$	0.79 ton/ac.		

Crop :- Sugarcane.
 Site :- Sugarcane Res. Stn., Jorhat.
 Ref:- As. 58(19).
 Type :- 'M'.

Object :-To study the best method of application of F.Y.M.

1. BASAL CONDITIONS :
(i) (a) Sugarcane-ratoon. (b) Ratoon. (c) Nil. (ii) (a) Reddish sandy loam of old alluvium. (b) N.A.
(iii) N.A. (iv) (a) One ploughing followed by two harrowings. (b) Planted in trenches $9^{\prime \prime}$ deep. (c) N.A. (d) Between rows-4'. (e) N.A. (v) Nil. (vi) CO-419 (late). (vii) Unirrigated. (viii) weedings and 2 earthing. (ix) $86.27^{\prime \prime}$. (x) 3.4 .1959 to 9.4.1959.
2. TREATMENTS :
$T_{1}=400 \mathrm{md} . / \mathrm{ac}$. of F.Y.M. broadcast one month before trenching.
$\mathrm{T}_{2}=400 \mathrm{md} . / \mathrm{ac}$. of F.Y.M. broadcast just before trenching.
$\mathrm{T}_{3}=400 \mathrm{md} . / \mathrm{ac}$. of F.Y.M. applied in trenches one month before planting.
$\mathrm{T}_{4}=400 \mathrm{md} . / \mathrm{ac}$. of F.Y.M. applied in trenches just before planting.
$\mathrm{T}_{5}=200 \mathrm{md} / \mathrm{ac}$. of F.Y.M. applied in trenches one month before planting and $200 \mathrm{md} / \mathrm{ac}$. of F.Y.M. applied with first earthing.
3. DESIGN :
(i) R.B.D. (ii) (a)
(b) N.A.
(iii) 6 . (iv) (a) $49^{\prime} \times 32^{\prime}$.
(b) $45^{\prime} \times 24^{\prime}$.
(v) and (vi) Yes.
4. GENERAL :
(i) Fair.
(ii) Nil
(iii) Stripped cane yield. (iv) (a) $1956-$ N.A.
(b) Yes.
(c) Nil. (v) (a) and (b) N.A.
(vi) and (vii) Nil.
5. RESULTS :
(i) 16.25 tons/ac. (ii) 2.71 tons/ac. (iii) Treatment differences are not significant. (iv) Av. yield of cane in tons/ac.

Treatment	T_{1}	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$	$\mathrm{~T}_{4}$	$\mathrm{~T}_{5}$
Av. yield	15.25	15.93	17.44	15.67	16.98
	S.E./mean				
	$=$	1.11 tons/ac.			

Crop:- Sugarcame.

Ref:-As. 58(1).
Site :- Govt. Agri. Farm, Lembucherra.
Type: ${ }^{-}{ }^{6} \mathbf{M}^{9}$.
Object :-To study the response of N at various levels on the yield of Sugarcane.

1. BASAL CONDITIONS :
(i) (a) No. (b) Jute. (c) Cowdung at $100 \mathrm{mds} / \mathrm{ac}$. as B.D. and A/S at 100 lb ./ac. as top dressing. (ii) (a) Sandy loarn. (b) N.A. (iii) 18.5.1958. (iv) (a) Ploughing and hoeing. (b) Planted in treaches $9^{\prime \prime}$ deep. (c) to (e) N.A. (v) $40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M. applied in trenches. (vi) $\mathrm{CO}-527$. (vii) Irrigated. (viii) Weeding once, hoeing once and earthing up twice. (ix) $64.83^{\prime \prime}$. (x) 23.2.1959.
2. TREATMENTS :
.5 levels of $\mathrm{N}: \mathrm{N}_{\mathrm{j}}=0, \mathrm{~N}_{1}=40, \mathrm{~N}_{2}=80, \mathrm{~N}_{3}=120$ and $\mathrm{N}_{4}=160 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
(i) R.B.D.
(ii) (a) 5 .
(b) $24^{\prime} \times 40^{\prime}$.
(iii) 4 .
(iv) (a) $24^{\prime} \times 8^{\prime}$.
(b) $21^{\prime} \times 5^{\prime}$.
(v) N.A. (vi) Yes.
4. GENERAL :
(i) Good.
(ii) No. (ii)
(iii) Sugarcane yieid.
(iv) (a) No.
(b) and (c)-. (v) (a) and (b) Nil. vi) and 'vii) Nil.
5. RESULTS :
(i) 13.93 tons, ac. (ii) 4.45 tons/ac. (iii) Treatment differences are not significant. (iv) Av. yield of cane in tons/ac.

Treatment	N_{3}	$\mathrm{~N}_{1}$	$\mathrm{~N}_{2}{ }^{\prime}$	N_{3}	$\mathrm{~N}_{4}$
Av. yield	11.56	11.93	13.83	14.76	17.58

Grop:- Sugarcane.

Site :- Sugarcane Res. Stn., Burlikson.

Ref :- As. 59(61).
Type :- 'C'.

Object :-To study the effect of time and method of harvesting.

1. BASAL CONDITIONS :
(i) (a) Sugarcane-ratoon. (b) Fallow. (c) Nil. (ii) (a) Sandy loam. (b) Refer expt. no. 59(62) on ?age 95.
(iii) 10 to 12.2.1959. 'iv) (a) One ploughing followed by two harrowings. (b) Planted in trenches y° deep.
(c) N.A. (d; Between rows-4'. (e) N.A. (v) Nil. (vi) CO-419 (late). (vii) Unirrigated. (viii) 2 weedings and 2 earthings. (ix) $66.31^{\prime \prime}$. (x) As per treatments.
2. TREATMENTS :

Main-plot treatments :
2 methods of harvesting : $\mathrm{H}_{1}=$ Flush with ridge and $\mathrm{H}_{2}=$ Flush with ground.
Sub-plot treatments :
5 dates of harvesting : $\mathrm{T}_{1}=15.1 .1960, \mathrm{~T}_{2}=15.2 .1960, \mathrm{~T}_{3}=15.3 .1960, \mathrm{~T}_{4}=15.4 .1960$ and $\mathrm{T}_{5}=15.5 .1960$.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/replication and 5 sub-plots/main-plot. (b) $98^{\prime} \times 160^{\prime}$. (iii) 3. 'iv) (a) $49^{\prime} \times 32^{\prime}$. (b) $45^{\prime} \times 24^{\prime}$. (v, N.A. (vi) Yes.
4. GENERAL:
(i) Fair. (ii) Nil. (iii) Sugarcane yield. (iv) (a) 1959-N.A. (b) and (c) No. (v) (a) and ;b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 15.76 tons/ac. (ii) (a) 3.04 tons/ac. (b) 4.33 tons/ac. (iii) T effect alone is highly significant. (iv) Av. yield of cane in tons/ac.

	T_{1}	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$	$\mathrm{~T}_{4}$	$\mathrm{~T}_{5}$	Mean
H_{1}	17.37	25.33	16.93	18.84	9.30	17.55
H_{2}	19.01	15.71	13.62	10.94	10.54	13.96
Mean	1819	20.52	1528	14.89	9.92	15.76

S.E. of difference of two

1. H marginal means	$=1.11$ tons/ac.
2. T marginal means	$=2.50$ tons/ac.
3. T means at the same level of H	$=3.54$ tons/ac.
4. H means at the same level of T	$=2.37$ tons/ac.

Crop:- Cotton.
 Site :- Cotton Res. Stn., Tura.

Ref :- As. 54(8).
Type :- ' $\mathbf{~ M}$ '.

Object :-To test the relative effect of different nitrogenous manures on Cotton crop.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) Nil. (ii) (a) Red sandy clay soil. (b) N.A. (iii) April 1954. (iv) (a) Ploughing and weeding. (b) Dibbling. (c) to (c) N.A:' (v) Nil. (vi) G. arboreum var. cornum (medium). (vii) Unirrigated. (viii) One weeding. (ix) 117.80". (x) December 1954.
2. TREATMENTS :

4 manures to give 60 lb ./ac. of $\mathrm{N}: \mathbf{M}_{\mathbf{0}}=$ No manure, $\mathbf{M}_{\mathbf{1}}=\mathrm{A} / \mathbf{S}, \mathbf{M}_{\mathbf{2}}=$ Cowdung and $\mathbf{M}_{3}=$ Oilcake.
Manures applied one week before sowing.
3. DESIGN:
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 6. (iv) and (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Attack of pink boll worm, red bug, aphis and wilt. Spraying Gammexane and Guesarol. (iii) Kapas yield. (iv) (a) 1949-1955. (b) and (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) 126.9 lb ./ac. (ii) 49.64 lb ./ac. (iii) Treatment differences are significant. (iv) Av. yield of kapas in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	M_{0}	M_{1}	M_{2}	M_{3}
Av. yield	62.2	77.6	216.2	151.4
	S.E. $/$ mean	$=$	$20.26 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Cotton.
 Ref :- As. 55(8).
 Site :- Cotton Res. Stno, Tura. Type :- ‘M'.

Object :-To test the relative effect of nitrogenous manures applied to Cotton crop.

1. BASAL CONDITIONS :
(i) (a) to (c) Nil. (ii) (a) Red sandy clay soil. (b) N.A. (iii) 22.4.1955. (iv) (a) Ploughing and weeding. (b) Dibbling. (c) to (e) N.A. (v) Nil. (vi) G. arboreum var. cornum. (vii) Unirrigated. (viii) Weeding with small hand hoe. (ix) $139.40^{\prime \prime}$. (x) December 1955.
2. TREATMENTS:

4 manures to give 60 lb ./ac. of $\mathrm{N}: \mathrm{M}_{0}=$ No manure, $\mathrm{M}_{1}=\mathrm{A} / \mathrm{S}, \mathrm{M}_{2}=$ Cowdung and $\mathrm{M}_{3}=$ Mustard oilcake. Manures applied one week before sowing.
3. DESIGN
(i) R.B.D.
(ii) (a) 4
(b) N.A.
(iii) 5 .
(iv) (a) $18^{\prime} \times 28^{\prime}$.
(b) $15^{\prime} \times 26^{\prime}$.
(v) Yes.
(vi) N.A.
4. GENERAL:
(i) N.A. (ii) Attack of pink boll worm, red bug, wilt and aphis. Spraying Gammexane and Guesarol. (iii) Kapas yield. (iv) (a) 1949-1955. (b) and (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) 144.9 lb ./ac. (ii) $71.44 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are significant. (iv) Av. yield of kapas in $\mathrm{lb} . / \mathrm{ac}$.

Treatmant	\mathbf{M}_{0}	\mathbf{M}_{1}	\mathbf{M}_{2}	\mathbf{M}_{3}
Av. yield	100.3	113.6	235.1	130.5
	S.E. $/$ mean	$=$	$31.9 \mathrm{lb} / \mathrm{ac}$.	

Crop :- Cotton.
Site :- Cotton Res. Stn., Tura.

Ref:- As. 56(13).
Type :- ${ }^{6} C^{\prime}$.
Object :-To find out the optimum time of sowing for Cotton.

1. BASAL CONDITIONS :

(i) (a) to (c) Nil. (ii) (a) Red sandy clay soil. (b) N.A. (iii) As per treatments. (iv) (a) Jhum system of cultivation. (b) Dibbling. (c) to (e) N.A. (v) Nil. (vi) G. arboreum var. cornum (medium). (vii) Unirrigated. (viii) Weeding. (ix) 139.40°. (x) N.A.
2. TREATMENTS :

6 dates of sowing : $D_{1}=15.3 .1956, D_{2}=1.4 .1956, D_{3}=16.4 .1956, D_{4}=1.5 .1956, D_{5}=16.5 .1956$ and $D_{6}=1.6 .1956$.
3. DESIGN :
(i) R.B.D.
(ii) (a) 6 .
(b) N.A.
(iii) 6. (iv) (a) $32^{\prime} \times 18^{\prime}$.
(b) $30^{\prime} \times 16^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A (iii) Attack of pink boll worm, red bug, aphis and wilt. Spraying Gammexane and Guesarol. (iii) Kapas yield. (iv) (a) to (c) No. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $309 \mathrm{lb} . / \mathrm{ac}$. (ii) $128.2 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are significant. (iv) Av. yield of kapas in lb :ac.

Treatment	D_{1}	$\mathrm{D}_{\mathbf{2}}$	D_{3}	\mathbf{D}_{4}	D_{5}	D_{6}
Av. yield	335	437	290	316	251	228
	S.E./mean	$=$	$52.34 \mathrm{lb} . / \mathrm{ac}$.			

Crop :- Cotton.	Ref:- As. 55(9).
Site :- Cotton Res. Stn., Tura.	Type :- ${ }^{\prime} \mathrm{C}^{\prime}$.

Object :-To study the economics of production of Cotton.

1. BASAL CONDITIONS :
(i) (a) to (c) Nil.
(ii) (a) Red sandy clay soil.
(b) N.A.
(iii) $6,7.4$.1955
(iv) (a) Ploughing and weecirg.
(b) Dibbling. (c) to (e) N.A. (v) A/S dibbled at 200 lb ./ac. two months after sowing. (vi; G. arborzum var. cornum (medium). (vii) Unirrigated. (viii) One weeding. (ix) 139.40". (x) Dec., 1955.
2. TREATMENTS :
3. Hill paddy + D. 46-2-1 (improved type of cotton).
4. Cotton alone.
5. DESIGN :
(i) R.B.D.
(ii) (a) 2 .
(b) N.A. (iii) 6.
(iv) (a) $33^{\prime} \times 18$.
(b) $30^{\prime} \times 16^{\prime}$.
(v) Yes.
(v) N.A.
6. GENERAL :
(i) N.A. (ii) Attack of pink boll worm, steam weevil, red bug, aphis and wilt-spraying Gammexane and Guesarol. (iii) Kapas yield. (iv) (a) to (c) No. (v) (a) and (b) Nil. (vi) and (vii) Nil.
7. RESULTS :
(i) 276.6 lb ./ac. (ii) 168.7 lb ./ac. (iii) Treatment difference is not significant. (iv) Av. yield of kapas in lb ./ac.

Treatment	1	2
Av. yield	181.4	371.8
	S.E./mean $=68.9 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Cotton.
Site :- Cotton Res. Stn., Tura.

Ref :- As. 56(12).
Type:- ' \mathbf{C} '.

Object :-To study the economics of production of Cotton.

1. BASAL CONDITIONS :
(i) (a) to (c) Nil. (ii) (a) Red sandy ciay soil. (b) N.A.. (iii) April, 1956. (iv) (a) Jhum system of cultivation. (b) Dibbling. (c) to (e) N.A. (v) N.A. (vi) G. arboreum var. cornum (medium). (vii) Unirrigated. (viii) Weeding. (ix) 159.15". (x) Dec., 1956.
2. TREATMENTS :
3. Cotton+groundnut.
4. Cotton + sannhemp.
5. Cotton alone.
6. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 6. (iv) and (v) N.A. (vi) Yes.
7. GENERAL :
(i) N.A. (ii) Attack of pink boll worm, aphis, wilt and bug-spraying with Gammexane and Guesarol. (iii) Kapas yield. (iv) (a) to (c) No. (v) (a) and (b) Nil. (vi) and (vii) Nil.
8. RESULTS:
(i) $71.67 \mathrm{lb} . / \mathrm{ac}$. (ii) 52.79 lb ./ac. (iii) Treatment differences are significant. (iv) Av. yield of kapas in lb./ac.

Treatment	1	2	3
Av. yield	44.0	32.0	139.0
	S.E./mean	$=21.55 \mathrm{lb} / \mathrm{ac}$.	

Crop :- Jute.
 Site :- Jute Seed Multiplication Farm, Barapetta.
 Ref:- As. 57(3).
 Type :- 'M'.

Object :-To compare the manurial values of C / N and A / S.

1. BASAL CONDITIONS :
(i) (a) Jute-Mustard. (b) Mustard. (c) Nil. (ii) (a) Sandy loam. (b) N.A. (iii) 28.6.1957. (iv) (a) to (e) N.A. (v) About 50 md . of cowdung applied one month before sowing. (vi) J.R.O. 632. (vii) Unirrigated. (viii) One weeding and thinning. (ix) $42.73^{\prime \prime}$. (x) 24, 25.10.1957.
2. TREATMENTS :

All combinations of (1) and (2) + a control.
(1) 2 levels of $\mathrm{N}: \mathrm{N}_{1}=20$ and $\mathrm{N}_{2}=40 \mathrm{lb}$./ac.
(2) 2 sources of $\mathrm{N}: \mathrm{S}_{1}=\mathrm{C} / \mathrm{N}$ and $\mathrm{S}_{2}=\mathrm{A} / \mathrm{S}$.
3. DESIGN:
(i) R.B.D (ii) (a) 5 . (b) N.A. (iii) 4. (iv) (a) and (b) $22^{\prime} \times 33^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Fair. (ii) Nil. (iii) Fibre yield. (iv) (a) 1958. (b) No. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.

5. RESULTS:

(i) $766 \mathrm{lb} . / \mathrm{ac}$. (ii) $151.3 \mathrm{lb} . / \mathrm{ac}$. (iii) None of the effects is significant. (iv) Av. yield of fibre in $\mathrm{lb} . / \mathrm{ac}$.

Control $=615 \mathrm{lb} . / \mathrm{ac}$.			
	N_{1}	N_{2}	Mean
S_{1}	750	900	825
S_{2}	825	750	783
Mean	783	825	804

S.E. of N or S marginal mean	$=53.49 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table or control mean	$=75.65 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Jute.
Site :- Jute Seed Multiplication Farm, Barapetta.

Ref :- As. 58(4).

Type :- ' \mathbf{M} '.

Object :-To compare the manurial values of C / N and A / S.

1. BASAL CONDITIONS :
(i) (a) Jute-Mustard. (b) Mustard. (c) Nil. (ii) (a) Sandy loam. (b) N.A. (iii) 6.6.1958. (iv) (a) to (e) N.A. (v) Nil. (vi) J.R.O. 632. (vii) Unirrigated. (viii) One weeding and thinning. (ix) 85.45°. (ix) 6.10.1958 to 9.10.1958.
2. TREATMENTS:

Same as in expt. no. 57(3) on page 103.
3. DESIGN :
(i) R.B.D. (ii) (a) 5 . (b) N.A. (iii) 4 . (iv) (a) $49^{\prime} \times 20^{\prime}$. (b) $45^{\prime} \times 16^{\prime}$. (v) $2^{\prime} \times 2^{\prime}$. (vi) Yes.
4. GENERAL:
(i) Good. (ii) Attack of semi-looper and hairy cater-piller. Dusting and hand picking. (iii) Green crop and fibre yield. (iv) (a) 1957-1958. (b) and (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $1446 \mathrm{lb} . ; \mathrm{ac}$. (ii; 279.3 lb. ;ac. (iii) None of the effects is significant. (iv) Av. yield of fibre in $\mathrm{lb} . / \mathrm{ac}$.

Control $=1316 \mathrm{lb}$ /ac.			
	N_{1}		$\mathrm{~N}_{2}$
$\mathrm{~S}_{1}$	Mean		
S_{2}	1346	1301	1324
Mean	1800	1467	1633
		1373	1478

S.E. of N or S marginal mean $\quad=98.8 \mathrm{lb} . ; \mathrm{ac}$.
S.E. of body of table or control mean $=139.6 \mathrm{lb}$./ac.

Crop :- Jute (Kharif).
Ref :- As. 54(22).
Centre :- Nowgong, Kamrup, Goalpara and Darrang (c.f.).
Type :- ' \mathbf{M} '.
Object :-To study the effect of inorganic fertilizers on the yield of Jute fibre.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Loam. (iii) Nil. (iv) JRC 212 capsularis (improved). (v) (a) N.A. (b) Broadcasting. (c) 10 lb ./ac. (d) and (e) -. (vi) 1st week of May. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x : Middle of Sept.
2. TREATMENTS:
3. Control.
4. $A_{i} S$ at $100 \mathrm{lb} . / \mathrm{ac}$.
5. A i S at 150 lb . ac .
6. A / S at $150 \mathrm{lb} . / \mathrm{ac} .+$ Single Super at 187.5 lb ./ac.
7. A / S at $150 \mathrm{lb} . / \mathrm{ac} . \perp$ Mur. of Pot. at $80 \mathrm{lb} . / \mathrm{ac}$.
8. AS S at 150 lb ./ac. + Single Super at 187.5 lb ./ac. + Mur. of Pot. at $80 \mathrm{lb} . / \mathrm{ac}$.
9. DESIGN :
(i) and (ii) 12 blocks were selected, 2 each in Nowgong and Goalpara, 3 in Darrang and 5 in Kamrup districts. (iii) (a) $34^{\prime} \times 134^{\prime}$. (b) $33^{\prime} \times 132^{\prime}$. (iv) Yes.

4- GENERAL:
(i) Fair. (ii) Nil. (iii) Weight of dry fibre. (iv) (a) 1954-contd. (b) and (c) N.A. (v) (a. and (b) N.A. (vi) and (vii)' Nil.
5. RESULTS
(i) $1117 \mathrm{lb} . / \mathrm{ac}$. (ii) $393 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of fibre in lb ./ac.

Treatment	1	2	3	4	5	6
Av. yield	912	999	1018	1161	1272	1341
	S.E./mean	$=$	$113 \mathrm{lb} . / \mathrm{ac}$.			

Crop :- Jute (Kharif). Ref :- As. 55(36).
 Gentre :- Nowgong, Kamrup, Goalpara and Darrang (c.f.). Type :- ' \mathbf{M} ',

Object :-To study the effect of inorganic fertilizers on the yield of Jute fibre.

1. BASAL CONDITIONS and 2. TREATMENTS:

Same as in expt. no 54(22) on page 104.
3. JDESIGN :
(i) and (ii) 14 blocks were selected, 6 in Nowgong, 5 in Kamrup, 1 in Goalpara and 2 in Darrang districts. (iii) (a) $34^{\prime} \times 134^{\prime}$. (b) $33^{\prime} \times 132^{\prime}$. (iv) Yes.
4. GENERAL:

Same as in expt. no. 54(22) on page 104.
5. RESULTS :
(i) $1017 \mathrm{lb} . / \mathrm{ac}$. (ii) $188 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. (iv) Av. yield of fibre in $1 \mathrm{~b} . / \mathrm{ac}$.

Treatment	1	2	3	4	5	6
Av. yield	' 723	915	1012	1069	1185	1195
	S.E.	$=$	lb./ac.		:	

```
Crop :- Jute (Kharif).
Ref:- As, 56(45).
Gentre :- Nowgong, Kamrup, Goalpara and Darrang (c.f.). Type :- 'M'.
```

Object :-To study the effect of inorganic fertilizers on the yield of Jute fibre.

1. BASAL CONDITIONS and 2. TREATMENTS :

Same as in expt. no. 54(22) on page 104.
3. DESIGN :
(i) and (ii) 10 blocks were selected, 2 each in Nowgong, Kamrup and Goalpara districts and 4 in Darrang district. (iii) (a) $34^{\prime} \times 134^{\prime}$. (b) $33^{\prime} \times 132^{\prime}$. (iv) Yes.
4. GENERAL :

Same as in expt. no. 54(22) on page 104.
5. RESULTS :
(i) $1295 \mathrm{lb} . / \mathrm{ac}$. (ii) $194 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of fibre in lb./ac.

Treatment	1	2	3	4	5	6
Av. yield	920	1142	1272	1491	1432	1510
	S.E. $/$ mean	$=$	$61 \mathrm{lb} . / \mathrm{ac}$.			

Crop :- Jute (Kharif).
 Ref :- As. 57(52).
 Centre :- Nowgong, Kamrup, and Goalpara (c.f.).
 Type :- ' \mathbf{M} '.

Object :-To study the effect of inorganic fertilizers on the yield of Jute fibre.

1. BASAL CONDITIONS :

Same as in expt. no. 54(22) on page 104.
2. TREATMENTS :

Same as in expt. no. 54(22) on page 104.
3. DESIGN :
(i) and (ii) 12 blocks were selected, 6 from Nowgong, 2 from Kamrup and 4 from Goalpara districts. (iii) (a) $34^{\prime} \times 134^{\prime}$. (b) $33^{\prime} \times 132^{\prime}$. (iv) Yes.
4. GENERAL :

Same as in expt. no. 54(22) on page 104.
5. RESULTS:
(i) $1225 \mathrm{lb} . / \mathrm{ac}$. (ii) 237 lb /ac. (iii), Treatment differences are highly significant. (iv) Av. yield of fibre in lb./ac.

Treatment	1	2	3	4	5	6
Av. yield	960	1093	1165	1349	1271	1512
	S E./mean	$=$	$68 \mathrm{lb} . / \mathrm{ac}$.			

$$
\begin{array}{ll}
\text { Crop :- Jate (Kharif). } & \text { Ref :- As. 58(66). } \\
\text { Centre :- Nowgong, Kamrup and Goalpara (c.f.). } & \text { Type :- } \mathfrak{\prime M} \text { '. }
\end{array}
$$

Object :-To study the effect of inorganic fertilizers on the yield of Jute fibre.

1. BASAL CONDITIONS :

Same as in expt. no. 54 (22) on page 104.
2. TREATMENTS :

Same as in expt. no. 54(22) on page 104.
3. DESIGN :
(i) and (ii) 7 blocks were selected, 4 from Nowgong, 2 from Goalpara and 1 from Kamrup districts. (iii) (a) $34^{\prime} \times 134^{\prime}$. (b) $33^{\prime} \times 132^{\prime}$. (iv) Yes.
4. GENERAL :

Same as in expt. no. 54(22) on page 104.
5. RESULTS :
(i) 1358 lb ./ac. (ii) 254 lb ./ac. (iii) Treatment differences are highly significant. (iv) Av. yield of
fibre in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	1	2	3	4	5	6
Av. yield	1099	1232	1171	1533	1473	1643
	S.E./mean	$=$	$96 \mathrm{lb} . / \mathrm{ac}$.			

```
Crop :- Jute (Kharif).
Centre :- Nowgong, Kamrup and Goalpara (c.f.).
Ref :- As. 59(63).
Type :- ' \(\mathbf{M}\) '.
```

Object :-To study the effect of inorganic fertilizers on the yield of Jute fibre.

1. BASAL CONDITIONS :

Sams as in expt. no. 54(22) on page 104.
2. TREATMENTS:

Same as in expt. no. $54(22)$ on page 104.
3. DESIGN :
(i) and (ii) 7 blocks, 4 from Nowgong, 1 from Kamrup and 2 from Goalpara districts were selected. (iii) (a) $34^{\prime} \times 134^{\prime}$. (b) $33^{\prime} \times 132^{\prime}$. (iv) Yes.
4. GENERAL:

Same as in expt. no. 54(22) on page 104.
5. RESULTS :

(i) $1295 \mathrm{lb} . / \mathrm{ac}$. (ii) $301 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are significant. (iv) Av. yield of fibre in lb ./ac.						
Treatment	1	2	3	4	5	6
Av. yield	1018	1113	1262	1457	1427	1492

\qquad

```
Crop :- Jute (Kharif).
Centre :- Nowgong, Kamrup and Goalpara (c.f.).
Ref:- As. 55(35).
Type :- 'M'.
```

Object :--To study the effect of inorganic fertilizers on the yield of Jute fibre.

1. BASAL CONDITIONS:
(i) (a) to (c) N.A. (ii) Loam. (iii) Nil. (iv) JRO-632 olitorius (improved). (v) (a) N:A. (b) Broadcacting. (c: $6 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) -. (vi) 1st week of May. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) Middle of September.

2. TREATMENTS :

Same as in expt. no. 54(22) on page 104.
. DESIGN :
(i) and (ii) 3 blocks, one from each district were selected. (iii) (a) $34^{\prime} \times 134^{\prime}$. (b) $33^{\prime} \times 132^{\prime}$. (iv) Yes.
4. GENERAL

Same as in expt. no. 54(22) on page 104.
RESULTS :
(i) 886 lb ./ac. (ii) $81 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. (iv) Av. yield of fibre in lb./ac.

Treatment	1	2	3	4	5	6
Av. yield	659	744	829	96	951	1017
	S.E. $/$ mean	$=$	$47 \mathrm{lb} . / \mathrm{ac}$.			

Crop :- Jute (Kharif).
Centre :- Kamarup, Gealpara and Darrang (c.f.).

Ref :- As. 56(46).
Type :- ' \mathbf{M} '.

Object :-To study the effect of inorganic fertilizers on the yield of Jute fibre.

1. BASAL CONDITIONS :

Same as in expt. no. 55 ;35; on page 107.
2. TREATMENTS :

Same as in expt. no. 54 22) on page 104.
3. DESIGN:
(i) and (ii) 5 blocks were selected, 2 each in Kamrup and Goalpara districts and one in Darrang Jistrict. (iii) (a) $34^{\prime} \times 134^{\prime}$. (b) $33^{\prime} \times 132^{\prime}$. (iv) Yes.
4. GENERAL :

Same as in expt. no. 54(22) on page 104.
5. RESULTS :
(i) 1819 lb. ac. (ii) $186 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are signifizant. (iv) Av. yield of fibre in lb./ac

Treatment	1	2	3	4	5	6
Av. yield	1464	1835	1932	1947	1979	1755
	S.E. $/$ mean	$=$	83 lb.jac.			

Crop :- Jute (Kharif).
 Ref :- As. 57(53).
 Centre :- Nowgong, Kamarup and Goalpara (c.f.).
 Type :- ' \mathbf{M} '.

Object :-To study the effect of inorganic fertilizers on the yield of Jute fibre.

1. BASAL CONDITIONS :

Same as in expt. no. 5535 ; on page 107.
2. TREATMENTS :

Same as in expt. no. 54(22) on page 104.
3. DESIGN :
(i) and ;ii) 4 blocks, one each from Kamrup and Goalpara districts and 2 from Nowgong district, were selected. (iii) (a) $34^{\prime} \times 134^{\prime}$. (b) $33^{\prime} \times 132^{\prime}$. (iv) Yes.
4. GENERAL:

Same as in expt. no. 54(22) on page 104.
5. RESULTS :
(i) $1794 \mathrm{lb} . / \mathrm{ac}$. (ii) $284 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of fibre in 1b. ac .

Treatment	1	2	3	4	5	6
Av. yield	1504	1763	1588	1984	1846	2077
	S.E.jmean	$=$	$142 \mathrm{lb} . \mathrm{fac}$.			

```
Grop :- Jute (Kharif).
Ref:- As. 58(57).
Centre :- Nowgong and Kamrup (c.f.).
Type :- 'M'.
```

Object :-To study the effect of inorganic fertilizers on the yield of Jute fibre.

1. BASAL CONDITIONS :

Same as in expt. no. 55(35) on page 107.

2. TREATMENTS:

Same as in expt. no. 54(22) on page 104.
3. DESIGN :
(i) 5 blocks were selected, 3 from Nowgong and 2 from Kamrup districts. (ii) -. (iii) (a) $34^{\prime} \times 134^{\prime} .(b)$ $33^{\prime} \times 132^{\prime}$. (iv) Yes.
4. GENERAL :

Same as in expt. no. 54(22) on page 104.
5. RESULTS :
(i) $1520 \mathrm{lb} . / \mathrm{ac}$. (ii) $118 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatments differences are highly significant. (iv) Av. yield of fibre in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	1	2	3	4	5	6
Av. yield	1287	1551	1511	1620	1537	1612
	S.E./mean	$=$	$53 \mathrm{lb} . / \mathrm{ac}$.			

```
Grop:- Jute (Kharif).
Ref:- As. 59(64).
Centre :- Nowgong (c.f.).
Type :- '/M'.
```

Object :-To study the effect of inorganic fertilizers on the yield of Jute fibre.

1. BASAL CONDITIONS :

Same as in expt. no. 55(35) on page 107.
2. TREATMENTS :

Same as in expt. no. 54(22) on page 104.
3. DESIGN :
(i) 2 blocks were selected.
(ii) - (iii) (a) $34^{\prime} \times 134^{\prime}$.
(b) $32^{\prime} \times 132^{\prime}$.
(iv) Yes.
4. GENERAL:

Same as in expt. no. 54(22) on page 104.
5. RESULTS :

Crop:- Jute.
 Ref :- As. 56(11).
 Site :- Jute Seed Multiplication Farm, Barapetta. Type :- ${ }^{6} \mathbf{M}^{\mathbf{y}}$.

Object:-To study the response of different varieties of Jute to application of N .

1. BASAL CONDITIONS:
(i) (a) Jute-Mustard (b) Mustard. (c) Nil. (ii) (a) Sandy loam. (b) N A. (iii) 20 and 21.3.1956. (iv) (a) to (e) N.A. (v) About 50 md . of cowdung applied one month before sowing. (vi) As per treatments. (vii) Unirrigated. (viii) Two weedings and two thinnings. (ix) $87^{\prime \prime}$. (x) 29.8.1956.
2. TREATMENTS :

Strips in one direction :
4 varieties: $V_{1}=J$. R.C. $212, V_{2}=$ J.R.C. $321, V_{3}=$ D. 154 and $V_{4}=$ Local.
Strips in the other direction :
4 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20, \mathrm{~N}_{2}=40$ and $\mathrm{N}_{3}=60 \mathrm{lb}$ /ac.
N applied as A / S.
3. DESIGN :
(i) Strip-plot. 'ii) (a) $16 . \quad$ (b) N.A. (iii) 4 . (iv) (a) $28^{\prime} \times 24^{\prime}$. (b) $24^{\prime} \times 20^{\prime}$. (v) $2^{\prime} \times 2^{\prime}$. (vi) Yes.
4. GENERAL :
(i) Fair. (ii) Nil, (iii) Fibre yield. (iv) (a) 1956 -i960. (b) Yes. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $574.3 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $364.8 \mathrm{lb} . / \mathrm{ac}$. (b) $264.8 \mathrm{lb} . / \mathrm{ac}$. (c) $228.0 \mathrm{lb} . / \mathrm{ac}$. (iii) None of the effects is significant. (iv) Av. yield of fibre in $\mathrm{lb} \cdot \mathrm{jac}$.

N_{0}	453.8	408.4	476.4	521.8	465.1
N_{1}	657.9	521.8	726.0	589.9	623.9
N_{2}	431.1	771.4	612.6	431.1	561.6
N_{3}	726.0	567.2	635.3	657.9	646.6
Mean	567.2	567.2	6126	550.2	574.3

S.E. of difference of two

1. V marginal means
$=129.0 \mathrm{lb} . / \mathrm{ac}$.
2. N marginal means
$=93.6 \mathrm{lb} . \mathrm{ac}$.
3. N means at the same level of V
$=190.1 \mathrm{lb}$. ac .
4. V means at the same level of N

$$
=168.1 \mathrm{lb} . / \mathrm{ac} .
$$

Crop:- Jute.

Site :- Jute Seed Multiplication Farm, Barapetta.

Ref :- As. 57(2).
Type :- ' $\mathbf{M V}$ '.

Object :-To study the response of different varieties of Jute to application of N .

1. BASAL CONDITIONS :
(i` (a) Jute-Mustard. (b) Mustard. (c) Nil. (ii) (a) Sandy loam. (b) N.A. (iii) 16.4.1957. (iv) (a) to (e) N.A. (v) About $50 \mathrm{md} / \mathrm{ac}$. of cowdung applied one month before sowing (vi) As per treatments. (vii) Unirrigated. (viii) Two weedings and two thinnings. (ix) 75.02^{*}. (x) 1 to 179.1957.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 56(11) on page 109.

4. GENERAL :

(i) Fair. (ii) Attack of semi-loopers and hairy cater-pillers-dusting and hand picking. (iii) Fibre yield. (iv) (a) 1956-1960. (b) and (c) Yes. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $1417 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $422.4 \mathrm{lb} . / \mathrm{ac}$. ;b) $472.2 \mathrm{lb} . / \mathrm{ac}$. (c) $274.1 \mathrm{lb} / \mathrm{ac}$. (iii) None of the effects is significant. (iv) Av. yield of fibre in lb.iac.

	V_{1}	V_{2}	V_{3}	V_{4}	Mean
N_{0}	1021	1134	1202	1089	1112
N_{1}	1384	1588	1634	1248	1464
N_{2}	1770	1565	1883	1225	1611
N_{3}	1611	1543	1497	1270	1480
Mean	1447	1457	1554	1208	1417

S.E. of difference of two
$\begin{array}{ll}\text { 1. } \mathrm{V} \text { marginal means } & =149.3 \mathrm{lb} . / \mathrm{ac} . \\ \text { 2. } \mathrm{N} \text { marginal means } & =167.0 \mathrm{lb} / / \mathrm{ac} . \\ \text { 3. } \mathrm{N} \text { means at the same level of } \mathrm{V} & =224.7 \mathrm{lb} . / \mathrm{ac} . \\ \text { 4. } V \text { means at the same level of } \mathrm{N} & =236.7 \mathrm{lb} . / \mathrm{ac} .\end{array}$

Crop :- Jute.
 Site :- Jute Seed Multiplication Farm, Barapetta.

Ref:- As. 58(1).
 Type :- ' $\mathbf{M V}^{\prime}$.

Object :-To study the response of different varieties of Jute to application of N .

1. BASAL CONDITIONS :
(i) (a) Jute-Mustard. (b) Mustard. (c) Nil. (ii) (a) Sandy loam. (b) N.A. (iii) 18, 19.4.1958. (iv)
(a) to (e) N.A. (v) About 50 md //ac. of cowdung applied one month before sowing. (vi) As per treatments.
(vii) Unirrigated. (viii) One weeding and one thinning. (ix) $104.36^{\prime \prime}$. (x) 2,3 and 12.9.1958.
2. TREATMENTS :

Main-plot treatments :

4 varieties : $V_{1}=$ J.R.C. $212, V_{2}=$ J.R.C. $321, V_{3}=$ D. 154 and $V_{4}=$ Local.
Sub-piot ireatments:
4 levels of N as A/S : $N_{0}=0, N_{1}=20, N_{2}=40$ and $N_{3}=60 \mathrm{Ib}$./ac.
3. DESIGN:
(i) Split-plot. (ii) (a) 4 main-plots/block; 4 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) $28^{\prime} \times 24^{\prime}$. (b) $24^{\prime} \times 20^{\prime}$. (v) $2^{\prime} \times 2^{\prime}$. (vi) Yes.
4. GENERAL :
(i) Fair. (ii) Light attack of hairy cater-piller-controlled by dusting and hand picking. (iii) Fibre yield. (iv) (a) 1956-1960. (b) and (c) Yes. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $860.7 \mathrm{lb} . / \mathrm{ac}$. (ii) (a) $286.2 \mathrm{lb} . / \mathrm{ac}$. (b) $282.2 \mathrm{lb} / \mathrm{ac}$. (iii) Only V effect is significant. (iv) Av. yield of fibre in $\mathrm{lb} / \mathrm{ac}$.

	V_{1}	$\mathrm{~V}_{2}$	$\mathrm{~V}_{3}$	$\mathrm{~V}_{4}$	Mean
N_{0}	884.8	703.3	839.4	726.0	788.4
$\mathrm{~N}_{1}$	862.1	771.4	1202.4	748.7	896.1
$\mathrm{~N}_{2}$	748.7	998.3	1111.7	703.3	890.5
$\mathrm{~N}_{3}$	703.3	703.3	1225.1	839.4	867.8
Mean	799.7	794.1	1094.6	754.4	860.7

S.E. of difference of two

1. V marginal means.	$=101.2 \mathrm{lb} / \mathrm{ac}$.
2. N marginal means	$=99.8 \mathrm{lb} . / \mathrm{ac}$.
3. N means at the same level of V	$=199.5 \mathrm{lb} / \mathrm{ac}$.
4. V means at the same level of N	$=200.3 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Groundnut (Kharif).
Site :- Agri. College, Jorhat.

Ref :- As. 57(46).
Type :- ${ }^{6} \mathbf{M}^{9}$.

Object :-To find out the effect of lime and $\mathrm{P}_{2} \mathrm{O}_{5}$ on Groundnut.

1. BASAL CONDITIONS

(i) (a) N.A. (b) Vegetables (pea, cabbage etc.). (c) Cowdung at $100 \mathrm{mds} / \mathrm{ac}$. (ii) (a) Sandy loam (b) N.A. (iii) 4.6 .1957 . (iv) (a) 4 ploughings followed by laddering. (b) Dibbling. (c) N.A. (d; $16^{\prime \prime} \times 12^{\prime \prime}$. (e) One. (v) Cowdung at $50 \mathrm{mds} / \mathrm{ac}$. (vi) T.M.V.-3. (vii) Unirrigated. (viii) Three weedings. (ix) N.A. (x) 6.11.1957.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 levels of lime : $L_{0}=0$ and $L_{1}=1000 \mathrm{lb}$./ac. of slaked lime.
(2) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{0}=0, \mathrm{P}_{1}=25 \mathrm{lb}$., ac.
3. DESIGN :
(i) Fact. in R.B.D. (ii) (a) 4. (b) $8^{\prime} \times 18^{\prime}$. (iii) 3. (iv) (a) and (b) $8^{\prime} \times 4,5^{\prime}$. (v) No. (vi) Yes.
4. GENERAL•
(i) Normal. (ii)
(vi) and (vi) Nil.
5. RESULTS :
(i) $124 \mathrm{lb} . j \mathrm{ac}$. (ii) $67 \mathrm{lb} . / \mathrm{ac}$. (iii) None of the effects is significant. (iv) Av. yield of pod in $\mathrm{lb} . / \mathrm{c}$.

	P_{0}	P_{1}	Mean
\mathbf{L}_{0}	131	152	137
$\mathrm{~L}_{1}$	109	116	112
Mean	115	134	124

S.E. of any marginal mean	$=27 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table	$=39 \mathrm{lb} . / \mathrm{ac}$.

Grop :- Groundnut (Kharif). Ref :- As. 58(41).
Site :- Agri. College, Jorhat. Type :- ‘M'.
Object:--To find out the effect of lime and $\mathrm{P}_{2} \mathrm{O}_{5}$ on Groundnut.

1. BASAL CONDITIONS:

(i) and (ii) Same as in expt. no. 57,46) on page 111. (iii) 10.5.1958. (iv) to (ix) Same as in expt. no. 57,46) on page 111. (x; 14.10.1958.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 57 (46) on page 111.
5. RESULTS :
(i) 556 lb ./ac. (ii) 119 lb ./ac. (iii) $\mathrm{P} \times \mathrm{L}$ interaction alone is highly significant. (iv) Av. yield of pod in $\mathrm{lb} / \mathrm{ac}$.

	P_{0}	P_{1}	Mean
L_{0}	569	516	543
$\mathrm{~L}_{1}$	415	722	569
Mean	492	619	556

S.E. of any marginal mean $\quad=48 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table $\quad=68 \mathrm{lb} / \mathrm{ac}$.

Crop :- Groundnut (Kharif).
Site :- Govt. Agri. Farm, Jorhat.

Ref :- As. 59(32).

Type :- 'M'.

Object :-To sludy the effect of fertilizers on Groundnut.
. BASAL CONDITIONS :
(i). (a) N A. (b) Cauliflower. (c) Cowdung at $150 \mathrm{mds} / \mathrm{ac}$., A / S at 50 lb ./ac. of N and Super at 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$. (ii) (a) Old alluvial acid soil. (b) N.A. (iii) 3.6.1959. (iv) (a) Five ploughings followed by laddering. (b) Line sowing. (c) N.A. (d) $24^{\prime \prime} \times 6^{\prime \prime}$. (e) N.A. (v) Cowdung at $61 \mathrm{mds} / \mathrm{ac}$. broadcast. (vi) Local. (vii) Unirrigated. (viii) Weeding and hoeing. (ix) 5.39". (x) 23.11.1959 to 28.11.1959.
2. TREATMENTS :
$\mathrm{T}_{0}=$ Control.
$\mathrm{T}_{1}=20 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{C} / \mathrm{A} / \mathrm{N}$.
$\mathrm{T}_{2}=20 \mathrm{lb}$./ac. of N as C/A/N. +40 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
$\mathrm{T}_{3}=20 \mathrm{lb}$./ac. of N as $\mathrm{C} / \mathrm{A} / \mathrm{N}+40 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super +40 lb ./ac. of $\mathrm{K}_{2} \mathrm{O}$ as Mur. Pot.
3. DESIGN :
(i) R.B.D. (ii) (a) 4.
(b) $44^{\prime} \times 12^{\prime}$.
(iii) 4 .
(iv) (a) and
(b) $11^{\prime} \times 12^{\prime}$.
(v) No. (vi) Yes.
4. GENERAL:
(i) Fair. (ii) Nil. (iii) Pod yield. (iv) (a) 1959 -contd. (b) Yes. (c) Nil. (v) (a) and (b) Nil. (vi) Nil. (vii) Expt. was conducted by Agri. Chemist.
5. RESULTS :
(i) $2006 \mathrm{lb} / \mathrm{ac}$. (ii) $267 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of pod in lb./ac.

Treatment:	T_{0}	$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$
Av. yield	1629	2124	2145	2124
	S.E./mean	$=$	$134 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Mustard (Rabi).	Ref :- As. 56 (41).
Site :- Govt. Agri. Farm, Jorhat.	Type :- ' ${ }^{\text {M }}$ '

Object :-To study the effect of different forms of $\mathrm{P}_{2} \mathrm{O}_{5}$ on the yield of Mustard.

1. BASAL CONDITIONS :

- (i) (a) N.A. (b) Ahu Paddy. (c) $100 \mathrm{md} / \mathrm{ac}$. of cowdung and $40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$. (ii) (a) Old alluvial acid soil. (b) N.A. (iii) 23.11.1956. (iv) (a) Five ploughings followed by laddering. (b) Broadcasting. (c) $3 \frac{1}{2}$ srs./ac. (d) and (e) N.A. (v) 100 md ./ac. of cowdung. (vi) Local Sarson. (vii) Unirrigated. (viii) Nil. (ix) 1.1". (x) 13.2.1957.

2. TREATMENTS:

3 sources of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{S}_{0}=$ No $\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{~S}_{1}=$ Kotka phosphate and $\mathrm{S}_{3}=$ Super.
$\mathrm{P}_{2} \mathrm{O}_{5}$ applied at 40 lb ./ac.
3. DESIGN:
(i) R B.D. (ii) (a) 3. (b) $76^{\prime} \times 24^{\prime}$. (iii) 4 . (iv) (a) and (b) $24^{\prime} \times 19^{\prime}$. (v) No. (vi) Yes.
4. GENERAL :
(i) Fair. (ii) Nil. (iii) Seed yield. (iv) (a) 1956-1957. (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) Nil. (vii) Expt. was conducted by Agri. Chemist.
5. RESULTS :
(i) $834 \mathrm{lb} . / \mathrm{ac}$. (ii) $115 \mathrm{lb} / \mathrm{ac}$. (iii) Treatment differences are significant. (iv) Av. yield of seed in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	$\mathrm{S}_{\mathbf{0}}$	$\mathrm{S}_{\mathbf{1}}$	$\mathrm{S}_{\mathbf{2}}$				
Av. yield	640	936	927				
	S E./mean					$=$	$57 \mathrm{lb} . / \mathrm{ac}$.

```
Crop :- Mustard (Rabi).
Ref :- As. 57(39).
Site :- Govt. Agri. Farm, Jorhat.
Type :- 'M'.
```

Object :-To study the effect of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied in different forms on the yield of Mustard.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Ahu Paddy. (c) $100 \mathrm{md} . / \mathrm{ac}$. of cowdung and 40 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$. (iii, (a) Old alluvial acid soil. (b) N.A. (iii) 25.11.1957. (iv) (a) 5 ploughings followed by laddering 'b) Broadcasting. ' 2 ; 3' srs ac. (d) and (e) N.A. (v) 100 md ./ac. of cowdung. (vi) Local Sarson. (vii) Unirrigated. (viii 1 weeding. (ix) 2.3". (x) 11.2.1958 to 14.2.1958.
2. TREATMENTS :

Same as in expt. no. 56(41) on page 113.
3. DESIGN :
(i) R.B.D.
(ii) (a) 3. (b) $32^{\prime} \times 81^{\prime}$.
iii) 4.
iv) (a) and (b)
(b) $32^{\prime} \times 27^{\prime}$.
(v) No. (vi) Yes.
4. GENERAL :
(i) Not good. (ii) Nil. (iii) Yjeld of seed. (iv) (a) 1956-1957. (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $76 \mathrm{lb} . / \mathrm{ac}$. (ii) 30 lb ./ac. (iii) Treatment differences are not significant. iv) Av. yield of seed in lb./ac.

Treatment	S_{0}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$
Av. yield	53	84	92
	S.E./mean $=$	$15.0 \mathrm{lb} . / \mathrm{ac}$.	

Crop:- Mustard (Rabi).
Ref :- As. 57(43).
Site :- Res. Farm, Kokilamukh.
Type :- ' \mathbf{M}^{\prime}.

Object :-To determine the effect of different nitrogenous fertilizers on the yield of Mustard.

1. BASAL CONDITIONS :
(i) 'a' to (c) N.A. (ii) (a) Sandy loam. (b) Refer below.* (iii) 12.12.1957. (iv) (a) N.A. (b) Broadeasting.
(c) 3 srs./ac. (d) and (e) N.A. (v) Nil. (vi) M-27 (Sarson). (vii) Unirrigated. (viii) N.A. (ix) N A. $\mathbf{x}_{\text {; }}^{\prime}$ 12.3.1958.
2. TREATMENTS:
$\mathrm{T}_{0}=$ Control.
$\mathrm{T}_{1}=\mathrm{A} . \mathrm{S}$ at $2 \mathrm{CO} \mathrm{lb} . / \mathrm{ac}$.
$T_{2}=$ Urea at $90 \mathrm{lb} . \mathrm{ac}$.
$\mathrm{T}_{3}=\mathrm{A} / \mathrm{S} / \mathrm{N}$ at $154 \mathrm{lb} . / \mathrm{ac}$.
$\mathrm{T}_{4}=\mathrm{C} / \mathrm{N}$ at $250 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) $18^{\prime} \times 60^{\prime}$. (iii) 8. (iv) (a) and (b) $18^{\prime} \times 12^{\prime}$. (v) No. (vi) Yes.

*Soil analysis, Kokilamukh.

(i) Chemical analysis (\%):

Depth	N	Avl. $\mathrm{P}_{2} \mathrm{O}_{3}$	Avl. $\mathrm{K}_{2} \mathrm{O}$	pH (water extract)	$\mathrm{pH}\left(\mathrm{K}_{\mathbf{2}} \mathrm{O}\right.$ extract)	Ac:dity
$0-9^{*}$	0.174	0.043	0.013	5.0	4.7	39.2
$9^{*}-18^{*}$	0.101	0.039	0.018	5.9	4.8	28.0

(ii) Mechanical analysis (\%):

Depth	Coarse sand	Fine sand	Silt	Clay	Moisture	Loss on ignition
$0-9^{*}$	0.5	49.5	24.0	22.0	2.0	4.8
$9^{\prime \prime}-18^{\prime \prime}$	1.0	48.9	28.0	20.0	1.4	3.0

4. GENERAL :
(i) N.A. (ii) N.A. (iii) Yield of seed. (iv) (a) $1957-1958$. (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $182 \mathrm{lb} . / \mathrm{ac}$. (ii) $38 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. (iv) Av. yield of seed in 1b./ac.

Treatment	$\mathrm{T}_{\mathbf{0}}$	$\mathrm{T}_{\mathbf{1}}$	$\mathbf{T}_{\mathbf{2}}$	T_{3}		\mathbf{T}_{4}
Av. yield	35	293	48	294	238	
	S.E./mean $=$	$13.44 \mathrm{lb} . / \mathrm{ac}$.				

```
Crop :- Mustard (Rabi).
Ref :- As. 58(32).
Site :- Res. Farm, Kokilamukh.
Type :- 'M'.
```

Object :-To determine the effect of different nitrogenous fertilizers on the yield of Mustard.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) Sandy loam. (b) Refer in expt. no. 57 (43) on page 114. (iii) 27.11.1958. (iv) (a) N.A. (b) Broadcasting. (c) 3 srs./ac. (d) and (e) N.A. (v) Nil. (vi) M-27 (Sarson). (vii) Únirrigated. (viii) N.A. (ix) N.A. (x) 9.3.1959.
2. TREATMENTS:
$\mathrm{T}_{0}=$ Control.
$\mathrm{T}_{1}=\mathrm{A} / \mathrm{S} \quad$ at $200 \mathrm{lb} . / \mathrm{ac}$.
$\mathrm{T}_{2}=$ Urea at $90 \mathrm{lb} . / \mathrm{ac}$.
$\mathrm{T}_{3}=\mathrm{A} / \mathrm{S} / \mathrm{N}$ at $154 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 6. (iv) (a) and (b) $18^{\prime} \times 12^{\prime}$. (v) No. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Yield of seed. (iv) (a) 1957-1958. (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $131 \mathrm{lb} . / \mathrm{ac}$. (ii) $69 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of seed in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	T_{0}	$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$
Av. yield	73	189	153	107
	S.E./mean	$=$	$28.17 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Mustard (Rabi).

> Ref :- As. $57(44)$
> Type :- ${ }^{6} \mathrm{M}$ '.

Site :- Res. Farm, Kokilamukh.
Object :-To find out the effect of N, P and K on the yield of Mustard.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) Sandy loam. (b) Refer expt. no. 57 (43) on page 114. (iii) 10.12 .1957 . (iv) (a) N.A. (b) Line sowing. (c) $3 \mathrm{srs} / \mathrm{ac}$. (d) Between lines-1'. (e) N.A. (v) Nil. (vi) M-27 (Sarson). (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 8.3.1958..

2. TREATMENTS :

All combinations of (1), (2) and (3)
(1; 2 levels of N as A/S : $N_{0}=0$ and $N_{1}=40 \mathrm{lb}$./ac.
(2) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Triple Super : $\mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=40 \mathrm{lb}$./ac.
(3) 2 levels of $\mathrm{K}_{2} \mathrm{O}$ as Mur. Pot. : $\mathrm{K}_{0}=0$ and $\mathrm{K}_{1}=40 \mathrm{lb}$./ac.
3. DESIGN :
(i) 2^{3} Fact. (ii) (a) 8 . (b) $96^{\prime} \times 18^{\prime}$. (iii) 8 . (iv) (a) and (b) $18^{\prime} \times 12^{\prime}$. (v) No. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (ii) Yield of seed. (iv) (a) 1957-1958. (b) Yes. (c) Nil. (v) (a) and b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $264.0 \mathrm{lb} . / \mathrm{ac}$. (ii) $49.0 \mathrm{lb} . / \mathrm{ac}$. (iii) Effect of N, P and interactions NP and NPK are highly significant. K effect and interaction NK are significant. (iv) Av. yield of seed in lb ./ac.

	P_{0}	P_{1}	Mean	K_{0}	K_{1}
N_{c}	80	210	145	176	114
N_{1}	330	436	383	384	382
Mean	205	323	264	280	248
K_{0}	178	381			
K_{1}	231	265			

S.E. of any marginal mean $\quad=8.66 \mathrm{lb},{ }^{\prime} \mathrm{ac}$.
S.E. of body of any table $=12.25 \mathrm{lb} . / \mathrm{ac}$.

```
Crop :- Mustard (Rabi). Ref :- As. 58(33).
Site :- Res. Farm, Kokilamukh. - Type :- 'M'.
```

Object :-To find out the effect of N, P and K on the yield of Mustard.

1. BASAL CONDITIONS:
(i) (a) to (c) N.A. (ii) (a) Sandy loam. (b) Refer expt. no. 57 (43) on page 114. (iii) 25.11.1958. (iv) (a) N.A. (b) Line sowing. (c) 3 srs/ac. 'd; Retween lines-1'. (e) N.A. (v; Nil. (vi) M- 27 (Sarson.. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 27.2.1959.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. $57(44)$ on page 115.
4. GENERAL:
'i) N.A. (ii) N.A
(vi) and (vii) Nil.
5. RESULTS :
(i) $452 \mathrm{lb} . / \mathrm{ac}$. (ii) $76 \mathrm{lb} . / \mathrm{ac}$. iii) Effect of N and interaction NPK are highly significant. Peffect and interaction NK are significant. (iv) Av. yield of seed in lb ./ac.

	P_{0}	P_{1}	Mean	K_{0}	K_{1}
N_{0}	382	407	395	391	398
N_{1}	478	542	510	549	471
Mean	430	475	452	470	435
K_{0}	433	507			
K_{1}	427	443			

S.E. for any marginal mean	$=13.43 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of any table	$=19.00 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Mustard.
 Site :- Res. Farm, Kokilamukh.

Ref :- As. 56(29).
 Type :- ' \mathbf{M} '.

Object :--To find out the optimum dose of phosphatic fertilizer as Triple Super for Mustard.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) Mustard. (c) A/S at 200 lb ./ac. (ii) (a) Sandy loam. (b) Refer expt. no. 57(43) on page 114. (iii) 6.11 .1956 . (iv) (a) Country method of ploughing, laddering and harrowing. (b) Line sowing. (c) 3 srs/ac. (d) 1^{\prime} between lines. (e) N.A. (v) Nil. (vi) M-27 (sarson early). (vii) Unirrigated. (viii) Weeding and earthing were done 15 to 20 days after sowing. (ix) 17.18". (x) 12.2.1957.
2. TREATMENTS :

7 doses of Triple Super : $P_{0}=0, P_{1}=10, P_{2}=20, P_{3}=30, P_{4}=40, P_{5}=50$ and $P_{6}=60 \mathrm{lb} . / \mathrm{ac}$.
Fert lizers were applied 5 days before sowing and mxed with soil by hoeing.

3: DESIGN :
(i) R.B.D.
(ii) (a) 7 .
(b) N.A. (iii) 6. (iv) (a) N.A.
(b) $42^{\prime} \times 12^{\prime}$. (v) 2^{\prime} between plots.
(vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Yield of seed, height and tiller count. (iv) (a) $1956-1958$. (b) Yes. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $4179 \mathrm{lb} . / \mathrm{ac}$. (ii) $59.03 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of seed in lb ./ac.

Treatment	P_{0}	P_{1}	\mathbf{P}_{2}	\mathbf{P}_{3}	\mathbf{P}_{4}	\mathbf{P}_{5}	\mathbf{P}_{6}
Av. yield	413.2	432.1	424.9	399.7	416.8	397.9	440.2
	S.E. $/$ mean	$=24.10 \mathrm{lb} . / \mathrm{ac}$.					

Crop :- Mustard.	Ref :- As. 57(19).
Site :- Res. Farm, Kokilamukh.	Type :- ' \mathbf{M}^{\prime}.

Object : - To find out the optimum dose of phosphatic fertilizer as Triple Super for Mustard.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Mustard. (c) A/S at 200 lb ./ac. (ii) (a) Sandy loam. (b) Refer expt. no. 57(43) on page 114. (iii) 20.11.1957. (iv) (a) Country method of ploughing, laddering and harrowing. (b) Line sowing. (c) 3 srs./ac. (d) 1^{\prime} between lines. (c) N.A. (v) Nil. (vi) M-27 (sarson early). (vii) Unirrigated. (viii) Weeding and earthing were done 15 to 20 days after sowing. (ix) $11.55^{\prime \prime}$. (x) 15.2.1958.
2. TREATMENTS and 3. DESIGN:

Same as in expt. no. 56 (29) above.
4, GENERAL :
(i) Satisfactory, plots with treatment P_{5} had a better growth. (ii) No. (ii) Seed yield, height and tiller count. (iv) (a) 1956-1958. (b) Yes. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RFSULTS :
(i) $303.3 \mathrm{lb} . / \mathrm{ac}$. (ii) $66.69 \mathrm{lb} / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of seed in lb . ac .

Treatment	P_{0}	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}
Av. yield	267.4	296.2	328.6	312.4	279.1	332.2	367.0
	S.E./mean	$=$	$27.23 \mathrm{lb} . / \mathrm{ac}$.				

Crop :- Mustard.
Ref :- As. 58(8).
Site :- Res. Farm, Kokilamukh.
Type :- ${ }^{6} \mathbf{M}$.

Object :-To find out the optimum dose of phosphatic fertilizer as Triple Super for Mustard.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Mustard. (c) A/S at 200 lb ./ac. (ii) (a) Sandy loam. (b) Refer expt. no. 57,43) on page 114. (iii) 19.11.1958. (iv) (a) Country method of ploughing, laddering and harrowing. (b) Line sowing. (c), 3 srs.;'ac. (d) 1^{\prime} between lines. (e) Nil. (v) Nil. (vi) M-27 (sarson-early). (vii) Weeding and earthing were done 15 to 20 days after sowing. (ix) $15.57^{\prime \prime}$. (x) 28.2.1959.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 56(29) on page 117.
4. GENERAL :
(i) Growth in plots with treatment P_{6} was better than other plots. Growth in control plot was pocr. (ii) Severe attack of saw-fly. Spraying and dusting of Gammexane. (iii) Seed yield, height and tiller count. (iv) (a) 1956-1958. (b) Yes. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $205.3 \mathrm{lb} . / \mathrm{ac}$. (ii) $58.8 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. (iv) Av. yield of seed in lb ./ac.

Treatment	\mathbf{P}_{0}	\mathbf{P}_{1}	\mathbf{P}_{2}	\mathbf{P}_{3}	\mathbf{P}_{4}	\mathbf{P}_{5}	\mathbf{P}_{6}
Av. yield	73.8	183.7	223.3	234.1	230.5	220.6	271.0
	S.E. $/$ mean	$=$	$24.04 \mathrm{lb} . / \mathrm{ac}$.				

```
Crop :- Mustard (Rabi).
Ref:- As. 56(44).
Site :- Res. Farm, Kokilamukh.
Type :- 'M'.
```

Object :-To determine the effect of C / N and A / S on the yield of Mustard.

1. BASAL CONDITIONS:
(i) (a’ to (c) N.A. (ii) (a’Sandy loam. (b) Refer expt. no. $57(43)$ on page 114. (iii) N.A. (iv) (a) N.A. (b) Broadcasting. (c) 4 srs/ac. (d) and (e) N.A. (v) Nil. (vi) M-27 (mustard). (vii) Unirrigatec. (viii) to (x ’ N.A.
2. TREATMENTS:
$\mathrm{T}_{0}=$ Control.
$\mathrm{T}_{1}=\mathrm{C}_{1} \mathrm{~N}$ at $125 \mathrm{lb} . / \mathrm{ac}$.
$\mathrm{T}_{2}=\mathrm{A}_{\mathrm{S}} \mathrm{S}$ at 100 lb ./ac.
$\mathrm{T}_{3}=\mathrm{C}_{1}^{\prime} \mathrm{N}$ at $250 \mathrm{lb} . / \mathrm{ac}$.
$\mathrm{T}_{4}=\mathrm{A}$ S at $200 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
(i) R.B.D. (ii) (a) 5 . (b) $60^{\circ} \times 18^{\prime}$. (iii) 4 . (iv) (a) and (b) $18^{\prime} \times 12^{\prime}$. (v) No. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) Yield of seed. (iv) (a) 1955-1956. (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $385.0 \mathrm{lb} . / \mathrm{ac}$. (ii) $68.0 \mathrm{lb} / \mathrm{ac}$. (iii) Treatment differences are highly significant. (iv) Av. yield of seed in lb./ac.

Treatment	T_{0}	$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$	$\mathrm{~T}_{4}$
Av. yield	199	280	448	347	652
	S.E. $/$ mean	$=34.0 \mathrm{lb} . / \mathrm{ac}$.			

Crop :- Mustard (Rabi).
Site :- Res. Farm, Kokilamukh.
\section*{Ref :- As. 55(27).}
Type :- ' ${ }^{\mathbf{M}}$ '

Object :-To find out the optimum time of application of A / S to Mustard crop.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Pulse. (c) Cowdung at $40 \mathrm{mds} / \mathrm{ac} .+$ oilcake at $15 \mathrm{mds} / \mathrm{ac}$. (ii) (a) Sandy loam. (b) Refer expt. no. $57(43)$ on page 114. (iii) 17.10 .1955 . (iv) (a) Ploughing followed by laddering. (b) Line sowing. (c) $3 \mathrm{srs} . / \mathrm{ac}$. (d) 1^{\prime} between lines. (e) N.A. (v) Nil. (vi) M-27 (Sarson, early). (vii) Unirrigated. (viii) 1 weeding and 2 earthings. (ix) $17.8^{\prime \prime}$. (x) 18.1.1956.
2. TREATMENTS :

4 times of application of $N: T_{0}=$ No manure, $T_{1}=$ Full dose 5 days before sowing, $T_{2}=$ Half 5 days before sowing and half 20 days after sowing and $T_{3}=$ Full dose 20 days after sowing
N applied at $40 \mathrm{lb} . / \mathrm{ac}$. as A/S.

DESIGN :
(i) R.B.D. (ii) (a) 4.
(b) $44^{\prime} \times 56^{\prime}$.
(iii) 6. (iv) (a) $44^{\prime} \times 14^{\prime}$.
(b) $42^{\prime} \times 12^{\prime}$.
(v) 2^{\prime} between plots.
(vi) Yes.
4. GENERAL:
(i) Poor growth in T_{0} and T_{3} plots ; satisfactory in T_{1} and T_{2} plots. (ii) Affected by mustard saw-fly before flowering. Gammexane dusted. (iii) Height, no. of tillers and yield of seed. (iv) (a) 1955-1957. (b) Yes. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $489 \mathrm{lb} / \mathrm{ac}$. (ii) $60.72 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are significant. (iv) Av: yield of seed in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	T_{0}	$\mathrm{~T}_{1}$	$\mathrm{~T}_{\mathbf{2}}$	$\mathrm{T}_{\mathbf{3}}$
Av. yield	209	644	585	518
	S.E./mean	$=$	$24.79 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Mustard (Rabi).
Site :- Res. Famm, Kokilamukh.
Ref :- As. 56(38).
Type :- ${ }^{6} \mathbf{M}$ '.

Object:-To find out the optimum time of application of A/S to Mustard.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) Mustard. (c) Cowdung at $40 \mathrm{md} . / \mathrm{ac} .+$ Oil cake at $15 \mathrm{md} . / \mathrm{ac}$. (ii) (a) Sandy loam. (b) Refer expt no. $57(43$) on page 114. (iii) Nil. (iv) (a) Ploughing followed by laddering. (b) Line sowing. (c) 3 srs./ac. (d) 1' between lines. (e) N.A. (v) Nil. (vi) M-27 (Sarson, early). (vii) Unirrigated. (viii) 1 weeding and 2 earthings. (ix) $17.58^{\prime \prime}$. (x) N.A
2. TREATMENTS and 3. DESIGN:

Same as in expt. no. $55(27)$ above.
4. GENERAL :
(i) Poor growth in T_{0} and T_{3} plots, satisfactory in T_{1} and T_{2} plots. (ii) Affected hy mustard aphids. Dusting sf Gammexane. (iii) Height of plants, no. of tillers and yield of seed. (iv) 'a) 1955-1957. (b) Yes. (c) Nil (v) (a and (b) Nil. (vi) and (vii) Nil

5. RESULTS:

(i) $163 \mathrm{lb} . / \mathrm{ac}$. (ii) 45.36 lb ./ac. iii' Treatment differences are significant. (iv)/Av. yield of seed in lb ./ac.

Treatment	$\mathrm{T}_{\mathbf{0}}$	T_{1}	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$
Av. yield	81	259	189	124
	S.E./mean	$=$	$18.52 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Mustard (Rabi).
Site :- Res. Farm, Kokilamukh.
> Ref :- As. $57(34)$. > Type :- ‘M’.

Object:-To find out the optimum time of application of $\mathrm{A}_{i} \mathrm{~S}$ to Mustard.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Mustard. (c) Cowdung at $40 \mathrm{mds} / \mathrm{ac}$. +oilcake at 15 mds 'ac. (ii) (a; Sandy loam. ib Refer expt. no. $57\langle 43$; on page 114. (iii) N.A. (iv) (a), Ploughing followed by laddering. (b, Line sowing. (c) 3 srs./ac. 'd) 1 'between lines. (e) N.A. (v) Nil. (vi) M-27 (Sarson, early'. (vii) Unirrigated. (viii) Weeding and earthing once. (ix’ 11.55". (x) N.A.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 55.27) on page 119.
4. GENERAL :
(i) Poor growth in T_{0} and T_{3} plots, satisfactory in other plots. (ii) Affected badly by mustard saw-fis. Gammexare applied. 'iii; Height, no. of tillers and yield of seed. (iv) (a) 1955-1957. (b, Y'es. (c) Ni. (v) (a) and (b) Nil. (vi) and vii) Nil.
5. RESULTS:
(i) 194 lb. ac. (ii) 40.34 lb ./ac. (iii) Treatment differences are significant. (iv) Av. yield of seed in lb, a.

Treatment	T_{0}	$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$
Av. yilld	112	324	223	194
	S.E./mean		$16.47 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Mustard (Rabi).	Ref :- As. 59 (SFT)
Centre :- Darrang (c.f.).	Type :- 'M'.

Object :-Type A-To study the response of Mustard to levels of N, P and K applied individually and .n combinations.

1. BASAL CONDITIONS .
(i) (a' to c) N.A. (ii) Alluvial. (iii) Nil. (iv) N.A. (v) (a) N.A. (b) Broadcast. (c) N.A. (d; and (e)--. (vi) Oct. 1959. (vii) to (x) N.A.
2. TREATMENTS :
$0=$ Control no manure). $\quad k=20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{K}_{2} \mathrm{O}$ as Mur. Pot.
$\mathrm{n}=20 \mathrm{lb}$. ac. of N as $\mathrm{A} \cdot \mathrm{S}$. $\quad \mathrm{nk}=20 \mathrm{lb}$./ac. of N as $\mathrm{A} / \mathrm{S}+20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{K}_{2} \mathrm{O}$ as
$\mathrm{p}=20 \mathrm{lb} . \mathrm{a}^{\prime} \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
$n p=20 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+$
$20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.

Mur. Pot.
$\mathrm{pk}=20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super $+20 \mathrm{lb} . / \mathrm{ac}$. of K O as Mur. Pot.
$n \mathrm{pk}=20 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super +20 lb ./ac. of $\mathrm{K}_{2} \mathrm{O}$ as Mur Pot.
3. DESIGN :
(i) and (ii) The district has been divided into four agriculturally homogeneous zones and one field assistant has been posted in each zone. The field assistant conducts the trials in one Revenue circle or thana in
the zone and the circle/thana is changed once in two years within the same zone. Each field assistant is required to conduct 31 trials in a year 8 on a kharif cereal, 8 on a rabi cereal, 8 on a cash crop, 4 on an oilseed crop and 3 on a leguminous crop. Half the number of trials conducted are of type A and the other half of type B on crops other than th: legumes. The three trials on legumes are of type C . Residual effects of phosphate application are studied on type C trials in two out of the four zones in each district every year. The above experiments are laid out in randomly located fields in randomly selected villages in each of the 4 zones at the rate of one experiment per village. (iii) (a) 40 ac. (b) $1 / 80 \mathrm{ac}$. (iv) Yes.
4. GENERAL :
(i) Fair to normal. (ii) N.A. (iii) Seed yield. (iv) (a) 1959-contd. (b) No. (c) N.A. (v) As per design. (vi) and (vii) Nil.
s. RESULTS :

Treatment	0	n	p	np	k	nk	pk	npk
Av. yield	123.4	255.1	213.9	320.9	205.7	164.6	296.2	485.5

G.M. $=258.2 \mathrm{lb} . / \mathrm{ac} . ;$ S.E. $=48.89 \mathrm{lb} . / \mathrm{ac}$. and no. of trials $=4$.
Crop :- Mustard (Rabi).
Reff :- As. 59 (SFT).
Centre :- Goalpara (c.f.).
Type :- ' \mathbf{M}^{\prime}.

Object :--Type A-To study the response of Mustard to levels of N, P and K applied individually and in combinations.

1. BASAL CONDITIONS to 4. GENERAL:

Same as in expt. no. 59(SFT) Type A on page 120 conducted at Darrang.
5. RESULTS:

Treatment	0	n	p	np	k	nk	pk	npk
Av. yield	222.2	230.4	296.2	395.0	164.6	205.7	320.9	419.7
	G.M. $=281.8 \mathrm{lb} . / \mathrm{ac}$.	S.E. $=$	$=56.8 \mathrm{lb} . / \mathrm{ac}$.	and no. of trials $=2$.				

```
Crop :- Mustard (Rabi).
Centre :- Kamrup (c.f.).
Ref :- As. 59(SFT).
Type:- \({ }^{6}\) M'.
```

Object :-Type A-To study the response of Mustard to levels of N, P and K applied individually and in combinations.

1. BASAL CONDITIONS to 4. GENERAL :

Same as in expt. no. 59(SFT) Type A on page 120 concucted at Darrang.
5. FESULTS :

Treatment	0	n	p	np	k	nk	pk	npk
Av. yield	329.1	567.8	551.3	666.5	576.0	501.9	757.0	633.6
	G.M. $=572.9 \mathrm{lb} . / \mathrm{ac} .$,	S.E. $=$	$=81.2 \mathrm{lb} . / \mathrm{ac}$.	and no. of trials $=2$.				

[^4]Object :-Type A-To study the response of Mustard and levels of N, P and K applied individually and in combinations.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Alluvial. (iii) Nil. (iv) N.A. (v) (a) N.A. (b) Broadcast. (c) N.A. (d) and (e) -. (vi) Oct.-Nov. 1959. (vii) to (ix, N.A. (x) March 1960.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 59(SFT) Type A on page 120 conducted at Darrang.
5. RESULTS :

Treatment	0	n	p	np	k	nk	pk	npk
Av. yield	452.6	423.8	464.9	444.3	473.1	444.3	526.6	761.1

G.M. $=498.8 \mathrm{lb} . / \mathrm{ac} . ;$ S.E. $=71.67 \mathrm{lb} . / \mathrm{ac}$. and no. of trials $=4$.

```
Grop :- Mustard (Rabi).
Ref :- As. 59(SFT).
Centre :- Sibsagar (c.f.).
Type :- 'M'.
```

Object :-Type A-To study the response of Mustard to levels of N, P and K applied individually and in combinations.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A (ii) Hilly. (iii) Nil. (iv) N.A. (v) (a) N.A. (b) Broadcast. (c) N.A. (d and (e) -. (vi) Nov. 1959. (vii) to (ix) N.A. (x) February to March 1960.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 59(SFT) Type A on page 120 conducted at Darrang.

5. RESULSTS :

Treatment	$\mathbf{0}$	n	p	np	k	nk	pk	npk
Av.yieldt	353.8	385.1	390.0	441.1	337.4	365.3	419.7	437.8

G.M. $=391.3 \mathrm{lb} ., \mathrm{ac} . ; \mathrm{S} . \mathrm{E} .=39.54 \mathrm{lb} . / \mathrm{ac}$. and no. of trials $=5$.

```
Crop :- Mustard (Rabi).
Ref:- As. 59 (SFT).
Centre :- Darrang (c.f.).
Type :- ' \(\mathbf{M}\) '.
```

Object :-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii), Alluvial. (iii) Nil. (iv) N.A. (v) (a) N.A. (b) Broadcasting. (c) N.A. (d) and (e) -.. (vi) December 1959., vii) to (ix) N.A. (x) February-March 1960.
2. TREATMENTS :
$0=$ Control.
$n_{1}=20 \mathrm{lb} . j \mathrm{ac}$. of N as A / S.
$\mathrm{n}_{2}=40 \mathrm{lb}, \mathrm{ac}$. of N as A / S.
$n_{1}^{\prime}=20 \mathrm{lb}$.'ac. of N as Urea.
$\mathrm{n}_{2}^{\prime}=40 \mathrm{lb}$., ac. of N as Urea.
$\mathrm{n}_{1}{ }^{\prime \prime \prime}=20 \mathrm{lb}$. ac . of N as C/A.N.
$\mathrm{n}_{2}{ }^{\prime \prime \prime}=40 \mathrm{lb}$.'ac. of N as C.A.N.
3. DESIGN :
(i) and (ii) The district has been divided into four agriculturally homogeneous zones ard ore field assistant has been posted in each zone. The field assistant conducts the triais in one Revenue circle or thana and the circle'thana is changed once in two years within the same zone. Each field Assistant is required to conduct 31 trials in a year 8 on a kharif cereal, 8 on a rabi cereal, 8 on cash crop, 4 on an oilseed crop and 3 on a legum nous crop. Half the number of trials conducted are of type A and the other half of type B on crops other than the legumes. The three trias on legumes are of type C. Residua: effects of phosphate application are studied on type C trials in t wo out of the four zones in each district every year. The above experiments are lidid out in randomly located fields in randomly selected villages in each of the 4 zones at the rate of one experiment per village. (iii) (a) •/40 ac. (b) 1,80 ac. (iv) Yes.
4. GENERAL :
(i) Below normal. (ii) N.A. (iii) Seed yjeld, (iv) (a) 1959-contd. (b) No. (c) N.A. (v) As per design.
(vi) and (vii) N.A.
5. RESULTS :

Treatment	0	n_{1}	n_{2}	$\mathrm{n}_{1}{ }^{\prime}$	$\mathrm{n}_{2}{ }^{\prime}$	$\mathrm{n}_{1}{ }^{\prime \prime \prime}$	$\mathrm{n}_{2}{ }^{\prime \prime \prime}$
Av. yield	90.5	107.0	123.4	98.7	131.7	123.4	123.4

```
Grop:- Mustard (Rabi).
Gentre :- Kamrup (c.f.).
Ref :- As. 59(SFT).
Type :- `M'.
```

Object :--Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.

1. BASAL CONDITIONS to 3. DESIGN:

Same as in expt. no. 59 (SFT) Type B on page 122 conducted at Darrang.
4. GENERAL :
(i) Normal. (ii) N.A. (iii) Seed yield. (iv) (a) 1959 -contd. (b) No. (c) N.A. (v) As per design. (vi) and (vii) N.A.
5. RESULLTS :

Treatment	0	n_{1}	n_{2}	$\mathrm{n}_{1}{ }^{\prime}$	$\mathrm{n}_{2}{ }^{\prime}$	$\mathrm{n}_{1}{ }^{\prime \prime \prime}$	$\mathrm{n}_{2}{ }^{\prime \prime \prime}$
Av. yield	238.6	386.7	526.6	567.8	732.3	543.1	641.8

Crop :- Mustard (Rabi).
 Centre :- Lakhimpur (c.f.).

Ref:- As. 59 (SFT).
Type :- ${ }^{\mathbf{d}} \mathbf{M}^{9}$.
Object :-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.

1. BASAL CONDITIONS to 3. DESIGN :

Same as in expt. no. 59(SFT) Type B on page 122 conducted at Darrang.
4. GENERAL :
(i) Normal. (ii) N.A. (iii) Seed yield. (iv) (a) 1959—contd. (b) No. (c) N.A. (v) As per design. (vi) and (vii) N.A.
5. RESULTS :

Crop :- Mustard (Rabi).

Cemtre :- Sibsagar (c.f.).

Ref :- As. 59(SFT).
Type :- ' ${ }^{\mathbf{M}}{ }^{\prime}$.

Object :-Type B-To investigate the relative efficiency of different nitrogenous fertilizers at different doses.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) Hilly. (iii) N.A. (iv) N.A. (v) (a) Ploughing, harrowing and planking. (b) Brcadcasting. (c) N.A. (d) and (e)-. (vi) Nov. 1959. (vii) to (ix) N.A. (x) Feb.-March 1960.
2. TREATMENTS and 3. DESIGN

Same as in expt. no. 59 (SFT) Typz B on page 122 conduzted at, Darrang.
4. GENERAL :
(i) Normal. 'ii) N.A. 'iii) Seed yield. (iv' (a) 1958 -contd. 'b, No. (c) N.A iv', As per design. (vi) and (vii) N.A.
5. RESLLTS:

Tre .tment	0	n_{1}	n_{2}	$\mathrm{n}_{1}{ }^{\prime}$	$\mathrm{n}_{2}{ }^{\prime}$	$\mathrm{n}_{1}{ }^{\prime \prime \prime}$	$\mathrm{n}_{2}{ }^{\prime \prime \prime}$
Av. yield	600.7	699.4	757.0	765.3	748.8	699.4	806.4

G.M. $=725.3 \mathrm{lb} . / \mathrm{ac} . ;$ S.E. $=56.4 \mathrm{lb} . / \mathrm{ac}$. and no. of trials $=8$
Crop :- Mustard (Rabi).
Ref :- As. 54(21).
Site :- Res. Farm, Kokilamukh.
Type :- ' C '.

Object:-To determine the effect of rotational cultivation on the yield of Mustard.

1. BASAL CONDITIONS :
(i) \{a) and b) As per treatments. (c) N.A. (ii) (a) Sandy loam. (b) Refer expt. no. 57,43; on page 114. (iii; 12.11.1954. (iv) (a; N.A. 'b) Line sowing. (c; 4 srs./ac. (d) 1^{\prime} between line. 'e) N.A. iv, A,S at $200 \mathrm{lb} . / \mathrm{ac}$. broadcast. (vi) Mustard-M-27. (vii) Unirrigated. (viii; N.A. (ix) N.A. (x) 14.12.1955.
2. TREATMENTS .

Treatment	1953-1954		1954-1955		1955-1956		1456-1957		1957-1958		1958-1.59	
	Kh	R	Kh	2								
T	A	M	A	M	A	M	A	M	A	M	A	M
T	A	F	G	M	A	F	G	M	A	F	G	\pm
T3	G	M	A	F	G	M	A	F	G	M	A	F
T_{4}	A	M	G	M	A	K	A	M	G	M	A	K
T5	G	M	A	K	A	M	G	M	A	K	A	M
T6	A	K	A	M	G	M	A	K	A	M	G	M

Kh-Kharif, R-Rabi, A-Ahu Paddy, M-Mustard, F-Fallow, G-Green manure, and M-Matikulai.
3. DESIGN :
(i) R.B.D. (ii) (a) 6 . (b) $42^{\prime} \times 72^{\prime}$. (iii) 6 . (iv) (a) $42^{\prime} \times 12^{\prime}$. (b) $40^{\prime} \times 10^{\prime}$. (v) and (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii; Yield of seed. (iv) (a) 1953-1958. (b) Yes. (c) Nil. (v) (a) and (b Nil. vi) and (vii) Nil.
5. RESULTS :
(i) 62.01 lb ./ac. ii; 17.01 lb ./ac. (iii) Treatment differences are not significant. (iv) Av. yield of seed in 1 b . ac .

Treatment	T_{1}	$\mathrm{~T}_{2}$	$\mathrm{~T}_{4}$	$\mathrm{~T}_{6}$
Av. yield	56	58	67	66
	S.E.Imean	$=$	$6.9 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Mustard (Rabi).
Site :- Res. Farm, Kokilamukh.

Ref :- As. 55(34).
Type :- ${ }^{6} \mathrm{C}^{\prime}$.

1. BASAL CONDITIONS:
(i) (a) and (b) As per treatments. (c) N.A. (ii) (a) Sandy loam. (b) Refer expt..no. 57(43) on page 114. (iii) 12.11.1955. (iv) (a) N.A. (b) Line sowing. (c) $4 \mathrm{srs} / \mathrm{ac}$. (d) 1^{\prime} between lines. (e) N.A. (v) A/S at 200 lb ./ac. broadcast. (vi) Mustard-M-27. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 14.2.1956.
2. TREATMENTS to 4. GENERAL.

Same as in expt. no. $54(21)$ on page 124.
5. RESULTS :
(i) $131.0 \mathrm{lb} . / \mathrm{ac}$. (ii) 66.0 lb ./ac. (iii) Treatment differences are significant. (iv) Av. yield of seed in lb./ac.

Treatment	T_{1}	$\mathrm{~T}_{3}$	$\mathrm{~T}_{5}$	$\mathrm{~T}_{6}$
Av. yield	166	138	128	92
	S.E. $/$ mean	$=$	$26.9 \mathrm{lb} / \mathrm{ac}$.	

Crop: :- Mustard (Rabi).
Site :- Res. Farm, 敒okilamukh.

Ref :- As. 56(43).
Type :- 'C'.

Object :-To determine the effect of rotational cultivation on the yield of Mustard.

1. BASAL CONDITIONS:
(i) (a) and (b) As per treatments. (c) N.A. (ii) (a) Sandy leam. (b) Refer expt. nò. 57(43) on page 114. (iii) 12.11 .1956 . (iv) (a) N.A. (b) Line sowing. (c) $4 \mathrm{srs} / \mathrm{ac}$. (d) Between lines-1'. (e) N.A. (v) A/S at $200 \mathrm{lb} . / \mathrm{ac}$. broadcast. (vi) Mustarc-M-27 (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 14.2.57.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no 54(21) on page 124.
5. RESULTS :
(i) $238 \mathrm{lb} . / \mathrm{ac}$. (ii) $45 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are highly significant. (iv) Av yield of seed in lb ./ac.

Treatment	T_{1}	$\mathrm{~T}_{2}$	$\mathrm{~T}_{4}$	$\mathrm{~T}_{5}$
Av. yield	275	167	268	241
	S.E./mean		$18.4 \mathrm{lb} . / \mathrm{ac}$.	

```
Crop:- Mustard (Rabi).
Site :- Res. Farm, Kokilamuklh.
```


Ref :- As. 57(42).

```
Type :- \({ }^{6}{ }^{C}\).
```

Objeet :-To determine the effect of rotational cultivation on the yield of Mustard.

1. BASAL CONDITIONS :
(i) (a) and (b) As per treatments. (c) N.A. (ii) (a) Sandy loam. (b) Refer expt no. 57(43) on page 114. (iii) 28.10 .1557 (iv) (a) N.A. (b) Line sowing. (c) 4 srs/ac. (d) Between lines-1'. (e) N.A. (v) A/S at 200 lb ./ac. broadcast. (vi) Mustard-M-27. (viii) Unirrigated. (viii) N.A. (ix.) N.A. (x) 4.2.1958.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 54(21) on page 124.
5. RESULTS :
(i) $125 \mathrm{lb} . / \mathrm{ac}$. (ii) 29 lb ./ac. (iii) Treatment differences are rot signifiv ant. (iv) Av. yield of seed $\mathrm{in} \mathrm{lb} . / \mathrm{ac}$.


```
Grop :- Mustard (Rabi).
Ref :- As. 58(30).
Site :- Res. Farm, Kokilamukh.

Object :-To determine the effect of rotational cultivation on the yield of Mustard.
1. BASAL CONDITIONS :
(i), (a) and (o) As per treatments. (c) N.A. (ii) (a) Sandy loam. (b) Refer expt. no. 57(43) on page 114. (iii) 28.10.1958. (iv) (a) N.A. (b) Line sowing. (c) , srs./ac. (d) Between lines-l'. (e) N.A. iv) A/S broadcast at \(200 \mathrm{lb} . / \mathrm{ac}\). (vi) Mustard-M-27. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 31.1.1959.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 54(21) on page 124.

5 RESULTS:
(i) \(95 \mathrm{lb} . / \mathrm{ac}\). (ii) 40 lb ./ac. (iii) Treatment differences are highly significant. (iv) Av. yield of seed in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{llccc} 
Treatment & \(\mathrm{T}_{1}\) & \(\mathrm{~T}_{2}\) & \(\mathrm{~T}_{5}\) & \(\mathrm{~T}_{6}\) \\
Av. yield & 142 & 82 & 77 & 81 \\
& & & & \\
& S.E./mean & \(=\) & \(16.3 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

\author{
Crop :- Mustard (Rabi). \\ Site :- Res. Farm, Kokilamukh. \\ Ref :- As. 54(18). \\ Type:- ' \(\mathbf{C}\) '.
}

Object:-To determine the optimum seed rate for Mustard.
1. BASAL CONDITIONS :
(i' (a) to (c) N.A. (ii) (a) Sandy loam. (b) Refer expt. no. 57 (43) on page 114. (iii) 30.10.1954. (iv) (a) Ploughing followed by laddering. (b) Broadcasting. (c) As per treatments. (d, and e) - (v) A/S at 200 lb ., ac. applied on 7.11 .1954 . (vi) M-27 (Sarson). (vii) Unirrigated. (viii) Nil. (ix) N.A. (x) 27.1.1955.
2. TREATMENTS :

4 seed rates: \(\mathrm{R}_{1}=6, \mathrm{R}_{2}=8, \mathrm{R}_{3}=10\) and \(\mathrm{R}_{4}=12 \mathrm{lb}\)./ac.
3. DESIGN :
(i) R.B.D. (ii) 'a' 4 . (b) \(42^{\prime} \times 48^{\prime}\). (iii) 6 . (iv) (a) \(42^{\prime} \times 12^{\prime}\). (b) \(40^{\prime} \times 10^{\prime}\). (v) and (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Yield of seed. (iv) (a) 1954-1955. (b) Yes. (c) Nil. (v) (a) and ;b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) 20.42 lb .;ac. (ii) 3.93 lb /ac. (iii) Treatment differences are highly significant. (iv`, Av. yield of seed in lb./ac.
\begin{tabular}{llccc} 
Treatment & \(\mathbf{R}_{1}\) & \(\mathbf{R}_{\mathbf{2}}\) & \(\mathbf{R}_{\mathbf{3}}\) & \(\mathbf{R}_{\mathbf{4}}\) \\
Av. yield & 13.61 & 17.02 & 23.82 & 27.22 \\
& & & & \\
& S.E./mean & \(=\) & \(1.60 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}
\begin{tabular}{ll} 
Crop :- Mustard (Rabi). & Ref :- As. 55(32). \\
Site :- Res. Farm, Kokilamukh. & Type :- \({ }^{\prime} \mathbf{C}^{\prime}\).
\end{tabular}

Object :-To determine the optimum seed rate for Mustard.

\section*{1. BASAL CONDITIONS :}
(i) (a) to (c) N.A. (ii) (a) Sady loam. (b) Refer expt. no. \(57(43\) ) on page 114 . (iii) N.A. (iv) (a) Ploughing followed by laddering. (b) Broadcasting. (c) As per treatments. (d) and (e) —. (v) A/S at 200 lb ./ac. applied on 19.11.1955. (vi) M-27 (Sarson). (vii) Unirrigated. (viii) Nil. (ix) and (x) N.A.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 54(18) on page 126.
5. RESULTS :
(i) \(1229 \mathrm{lb} . / \mathrm{ac}\). (ii) \(67 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are highly significant. (iv) Av. yield of seed in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{lcccc} 
Treatment & \(\mathbf{R}_{\mathbf{1}}\) & \(\mathbf{R}_{\mathbf{2}}\) & \(\mathbf{R}_{\mathbf{3}}\) & \(\mathbf{R}_{\mathbf{4}}\) \\
Av. yield & 1141 & 1153 & 1234 & \(\mathbf{1 3 8 6}\) \\
& & & & \\
& S.E./mean & \(=\) & \(27.0 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

\author{
Crop :- Mustard (Rabi). \\ Ref :- As. 55(30). \\ Site :- Res. Farm, Kokilamukh. \\ Type :- 'C'.
}

Object: :-To find the optimum sowing season with different seed rates for Mustard.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) Sandy loam. (b) Refer expt. no. 57(43) on page 114. (iii) As per treatments.
(iv) (a) Ploughing followed by laddering. (b) Broadcasting. (c) As per treatments (d) and (e)-. (v) Mit.
(vi) M-27. (vii) Unirrigated. (viii) and (ix) N.A. (x) 30.12.1955., 19.1.1956, 18.2.1956 and 12.3.1956.
2. TREATMENTS :

Main-plot treatments :
6 dates of sowing : \(D_{1}=1.10 .1955, D_{2}=16.10 .1955, D_{3}=31.10 .1955\)., \(D_{4}=15.11 .1955 ., D_{5}=30.11 .1955\), and \(D_{6}=15.12 .1955\).
Sub-plot treatments :
4 seed rates : \(\mathrm{R}_{1}=6, \mathrm{R}_{2}=8, \mathrm{R}_{3}=10\) and \(\mathrm{R}_{4}=12 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 6 main-plots/replication; 4 sub-plots/main-plot. (b) \(48^{\prime} \times 48^{\prime}\). (iii) 4. (iv) (a) \(8^{\prime} \times 12^{\prime}\). (b) \(6^{\prime} \times 10^{\prime}\). (v) \(2^{\prime}\) between plots. (vi) Yes.
4. GENER \(A \mathrm{~L}\) :
(i.) and (ii) N.A. (iii) Yield of seed. (iv) (a) 1953-1955. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(9183 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(987 \mathrm{lb} . / \mathrm{ac}\). (b) \(1198 \mathrm{lb} . / \mathrm{ac}\). (iii) Main effects of \(\mathrm{D}, \mathrm{R}\) and interaction \(\mathrm{D} \times \mathrm{R}\) are highly significant. (iv) Av. yield of seed in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & D1 & \(\mathrm{D}_{2}\) & \(\mathrm{D}_{3}\) & \(\mathrm{D}_{4}\) & \(\mathrm{D}_{5}\) & \(\mathrm{D}_{6}\) & Mean \\
\hline \(\mathrm{R}_{1}\) & 2541 & 12796 & 14520 & 16517 & 4719 & 205 & 8550 \\
\hline \(\mathrm{R}_{2}\) & 2723 & 18241 & 15791 & 15972 & 5581 & 363 & 9778 \\
\hline \(\mathrm{R}_{3}\) & 1271 & 19602 & 14702 & 14883 & 4991 & 363 & 9302. \\
\hline \(\mathrm{R}_{4}\) & 1997 & 18695 & 14702 & 14066 & 4855 & 296 & 9102 \\
\hline Mean & 2133 & 17333 & 14928 & 15359 & 5037 & 307 & 9183 \\
\hline
\end{tabular}

SE. of difference of two
\begin{tabular}{ll} 
1. D marginal means & \(=349.0 \mathrm{lb} . / \mathrm{ac}\). \\
2. R marginal means & \(=345.8 \mathrm{lb} \cdot / \mathrm{ac}\). \\
3. R means at the same level of \(\mathbf{D}\) & \(=847.1 \mathrm{lb} . / \mathrm{ac}\). \\
4. D means at the same level of R & \(=812.3 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Mustard.}

Site :- Res. Farm, Kokilamukh.

Ref :- As. 55(19).
Type :- ‘' \(\mathbf{C}\) '.

Object :-To compare the efficiency of line sowing at diferent spacings with broadcasting for Mustard.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b), Mustard. 'c, A'S at 200 lb . 'ac. 'ii) 'a) Sandy loam. (b) Refer expt. no. 57'43) on page 114. (iii) 5.11.1955. (iv) 〈a Country method of ploughing, laddering, harrowing. (b) As per treatments. , i) 3 srs./ac. (d) As per treatments. (e) N.A. (v) A'S applied at 200 lb . ac. 5 days before sowing. (i) M-27 (Sarson, early). (vii; Unirrigated. (viii) Weeding and earthing were done 15 to 20 days af:er sowing. (ix) \(16.82^{\prime \prime}\). (x) 8.2.1956.

\section*{2. TREATMENTS :}

4 spacings between lines : \(S_{0}=\) Broadcasting, \(\quad S_{1}=6^{\prime \prime}\) (24 lines/plot), \(S_{2}=9^{\prime \prime}\) (16 lines ; plot; and \(S_{3}=12^{\prime \prime}\), 12 lines/ \({ }^{\prime}{ }^{\prime}{ }^{\prime}{ }_{2}{ }^{1}\).
3. DESIGN:
(i) R.B.D. (ii) (a) 4 . (b) N.A. (iii' 4 . (iv) (a) N.A. (b) \(42^{\prime} \times 12^{\prime}\). (v) \(2^{\prime}\) between plots. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. iii Height, no. of tillers/plant and seed yield. (iv; (a) 1955-1957. (b) Yes. (c) Nil. iv) (a) and (b) Nil. (vi, and (vii) Nil.
5. RESULTS:
(i) 546.4 lb ''ac. (ii)' 94.36 lb .;ac. (iii) Treatment differences are significant. (iv) Av. yield of seed in lb. ac.
\begin{tabular}{llccc} 
Treatment & \(\mathrm{S}_{0}\) & \(\mathrm{~S}_{1}\) & \(\mathrm{~S}_{2}\) & \(\mathrm{~S}_{3}\) \\
Av. yield & 471.3 & 484.1 & 692.8 & 537.5 \\
& & & & \\
& S.E./mean & \(=\) & \(47.18 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}
\begin{tabular}{ll} 
Grop :- Mustard. & Ref :- As. 56(28). \\
Site :- Res. Farm, Kokilamukh. & Type :- ‘'.
\end{tabular}

Object:-To compare the efficiency of line sowing at different spacings with broadcasting for Mustard.
1. BASAL CONDITIONS :
(i) , a) Nil. (b) Mustard. (c) A!S applied at 200 lb ./ac. (ii), (a) Sandy loam. (b) Refer expt. no. 57,43) on page 114. (iii) 13.11.1956. (iv) (a) Country method of ploughing, laddering and harrowing. ib As per treatments. (c) 3 srs./ac. (d) As per treatments. (e) N.A. (v) A.S applied at 200 lb .;ac. 5 day s before sowing. (vi) M-27 (Sarson, early). (vii) Unirrigated. (viii) Weeding and earthing were done 15 to 20 days after sowing. (ix) \(17.18^{\prime \prime}\). (x) 11.2.1957.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 55(19) above.
4. GENERAL :
(i) Satisfactory. (ii) Slight attack by saw-fly-dusting with Gammexane. (iii) Yield of seed, height of plant, and no. of tillers'plant. (iv) (a) 1955-1957. (b) Yes. (c) Nil. (v) 'a) and (b) Nil. (vi' and (vii) Nii.
5. RESULTS:
(i) \(909.2 \mathrm{lb} . / \mathrm{ac}\). (ii) \(80.84 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are not significant. (iv) Av. yield of seed in lb./ac.
\begin{tabular}{lcccc} 
Treatment & \(\mathrm{S}_{\mathbf{0}}\) & \(\mathrm{S}_{1}\) & \(\mathrm{~S}_{2}\) & \(\mathrm{~S}_{3}\) \\
Av. yield & 822.4 & 953.4 & 908.8 & \(: 952.1\) \\
& & & & \\
& & & \\
& S.E./mean & \(=\) & \(40.42 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}
\begin{tabular}{ll} 
Crop :- Mustard. & Ref :- As. 57(20). \\
Site :- Res. Farm, Kokilamukh. & Type :- ' \({ }^{\prime}\) '.
\end{tabular}

Object :-To compare the efficiency of line sowing at different spacings with broadcasting for Mustard.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Mustard. (c) A/S at \(200 \mathrm{lb} / \mathrm{ac}\). (ii) (a) Sandy loam. (b) Refer expt. no. 57(43) on page 114. (iii) 16.11.1957. (iv) (a) Country method of ploughing, laddering and harrowing. (b) As per treatments. (c) 3 srs/ac. (d) As per treatments. (e) N.A. (v) A/S applied at \(200 \mathrm{lb} . / \mathrm{ac} .5\) days before sowing. (vi) M-27 (Sarson, early). (vii) Unirrigated. (viii) Weeding and earthing were done 15 to 20 days after sowing. (ix) \(11.55^{\prime \prime}\). (x) 17.2.1958.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 55(19) on page 128.
4. GENERAL :
(i) Satisfactory. (ii) Slightly attacked by aphids-dusting with Gammexane. (iii) Yield of mustard seed, height of plant and no. of tillers/plant. (iv) (a) 1955-1957. (b) Yes. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) \(667.1 \mathrm{lb} . / \mathrm{ac}\). (ii) \(52.45 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are not significant. (iv) Av. yield of seed in lb./ac.
\begin{tabular}{llccc} 
Treatment & \(\mathrm{S}_{0}\) & \(\mathrm{~S}_{1}\) & \(\mathrm{~S}_{2}\) & \(\mathrm{~S}_{3}\) \\
Av. yield & 655.0 & 703.6 & 657.7 & 652.3 \\
& & & & \\
& S.E./mean & \(=\) & 26.22 lb ./ac. &
\end{tabular}
\begin{tabular}{|c|c|}
\hline Grop :- Mustard. & Ref :- As. 56(31). \\
\hline Site .- Res. Farm, Kokilamukh. & Type :- 'CV'. \\
\hline
\end{tabular}

Object :-To find out the optimum seed rate for different varieties of Mustard.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Arhar, Mung and Matikalai. (c) Oilcake at 13 to \(15 \mathrm{mds} / \mathrm{ac}\). and cowdung at 30 to 40 mds/ac. (ii) (a) Sandy loam. (b) Refer expt. no. 57(43) on page 114. (iii) 3.11.1956. (iv) (a) Country method of ploughing, laddering and harrowing. (b) Line sowing. (c) As per treatments. (d) \(1^{\prime}\) between lines. (e) N.A. (v) A/S at \(200 \mathrm{lb} . / \mathrm{ac} .5\) days before sowing. (vi) As per treatments. (vii) Unirrigated. (viii) 1 weeding and 2 earthings with khurpi and hoe. (ix) \(17.58^{\prime \prime}\). (x) 15.2.1957 to 21.2.1957.

\section*{2. TREATMENTS :}

\section*{Main-plot treatments :}

3 varieties: \(\quad \mathrm{V}_{1}=\mathrm{M}-27\) (Sarson), \(\mathrm{V}_{2}=\mathrm{M}-2\) (Rai). and \(\mathrm{V}_{3}=\mathrm{M}-60\) :Toria).
Sub-plot treatments:
5 seed rates : \(\mathrm{R}_{1}=2, \mathrm{R}_{2}=2.5, \mathrm{R}_{3}=3, \mathrm{R}_{4}=3.5\) and \(\mathrm{R}_{5}=4\) srs \(/ \mathrm{ac}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block; 5 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) \(20^{\prime} \times 14^{\prime}\) (b) \(18^{\prime} \times 12^{\prime}\). (v) \(2^{\prime}\) between plots. (vi) Yes.
4. GENERAL :
(i) Satisfactory, but Rai plants had better growth. (ii) Sarson and Toria were affected by white rust disease. Controlled by spraying copper fungicide at 2 chs . in 2 gallons of water. (iii) Yield of seed, height and no. of tillers/plant. (iv) (a) 1956-1958. (b) Yes. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) 959.3 lb ./ac. (ii) (a) \(161.4 \mathrm{lb} . / \mathrm{ac}\). (b) 120.6 lb /ac. (iii) None of the effects is significant. (iv) Av. yield of seed in lb ./ac.
\begin{tabular}{l:rrrrr|r} 
& \multicolumn{1}{c}{\(\mathbf{R}_{1}\)} & \multicolumn{1}{c}{\(\mathbf{R}_{2}\)} & \multicolumn{1}{c}{\(\mathbf{R}_{3}\)} & \(\mathbf{R}_{4}\) & \multicolumn{1}{c}{\(\mathbf{R}_{5}\)} & \multicolumn{1}{c}{ Mean } \\
\hline \(\mathbf{V}_{1}\) & 1020.9 & 957.9 & 1002.0 & 973.7 & 1055.6 & 1002.0 \\
\(\mathbf{V}_{2}\) & 1039.8 & 1069.8 & 926.4 & 920.1 & 765.7 & 944.4 \\
\(\mathbf{V}_{3}\) & 901.2 & 920.1 & 891.8 & 989.4 & 954.8 & 931.4 \\
\hline Mean & 987.3 & 982.6 & 940.1 & 961.1 & 925.4 & 959.3
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll} 
1. \(V\) marginal means & \(=51.04 \mathrm{lb} . / \mathrm{ac}\). \\
2. \(\mathbf{R}\) marginal means & \(=49.23 \mathrm{lb} . / \mathrm{ac}\). \\
3. \(\mathbf{R}\) means at the same level of V & \(=85.28 \mathrm{lb} . / \mathrm{ac}\). \\
4. \(V\) means at the same level of \(\mathbf{R}\) & \(=91.77 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Mnstard.}

Site :- Res. Farm, Kokilamukh.

Ref:- As. 57(18).
Type :- 'CV'.

Object :-To find out the optimum seed rate for different varieties of Mustard.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Arhar, Mung and Matikalai. (c) Oilcake manure at 13 to \(15 \mathrm{mds} . \mathrm{fac}\). and cowdung at 30 to \(40 \mathrm{mds} / \mathrm{ac}\). (ii) (a) Sandy loam. (b) Refer expt. no. ( 57 ; 43 on page 114. (iii) 15.11 .1957 . (iv) (a) Country method of ploughing, laddering and harrowing, etc. (b) Line sowing. (c) As per treatments. (d) Between lines-1'. (e) N.A. (v) A; S at 200 lb ./ac. applied 5 days before sowing and mixed with soil by hceing. (vi) As per treatments. (vii) Unirrigated. (viii) Weeding and 2 earthings with khurpi and hoe. (ix) \(11.55^{*}\). (x) 17.2.1958 to 25.2.1958.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 56(31) on page 129.
4. GENERAL :
(i) Rai plants had better growth. (ii) During the flowering period the expt. was affected by saw-fly. Controlled by dusting with Gammexane and hand picking. (iii) Seed yield, height and tiller count. (iv) (a; 19561958. (b) Yes. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Ni].
5. RESULTS :
(i) 5648 lb .'ac. (ii) (a) 89.08 lb ./ac. (b) \(82.44 \mathrm{lb} . / \mathrm{ac}\). (iii) Main effect of V is highly significant. Maic effect of \(R\) is significant. Interaction is not significant. (iv) Av. yield of seed in lb.jac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{R}_{1}\) & \(\mathrm{R}_{2}\) & \(\mathrm{R}_{3}\) & \(\mathrm{R}_{4}\) & \(\mathrm{R}_{5}\) & Mean \\
\hline \(\mathrm{V}_{1}\) & 488.4 & 483.7 & 617.6 & 570.3 & 573.5 & 546.7 \\
\hline \(V_{2}\) & 683.8 & 633.4 & 661.7 & 538.8 & 690.1 & 641.6 \\
\hline \(\mathrm{V}_{3}\) & 444.3 & 491.6 & 570.3 & 491.6 & 532.5 & 506.1 \\
\hline Mean & 538.8 & 536.2 & 616.6 & 533.6 & 598.7 & 564.8 \\
\hline
\end{tabular}

\section*{S.E. of difference of two}
1. V marginal means
\(=28.17 \mathrm{lb} . / \mathrm{ac}\).
2. R marginal means
\(=33.66 \mathrm{lb} . / \mathrm{ac}\).
3. \(R\) means at the same level of \(V \quad=58.29 \mathrm{lb} . / \mathrm{ac}\).
4. V means at the same level of \(\mathbf{R}\)
\(=59.26 \mathrm{lb} . / \mathrm{ac}\).

Ref :- As. 58(31).
Type :- 'CV'.

Object:-To find out the optimum seed rate for different varieties of Mustard.
1. BASAL CONDITIONS :
(i) (a) No. (b) and (c) N.A. (ii) (a) Sandy loam. (b) Refer expt. no. 57(43) on page 114. (iii) 5.11.1958. (iv) (a) N.A. (b) Line sowing. (c) As per treatments. (d) Between lines-1'. (e) N.A. (v) A/s at \(200 \mathrm{lb} . / \mathrm{ac}\). broadcast. (vi) As per treatments. (vii) Unirrigated. (viii) and (ix) N.A. (x) 15.2.1959.
2. TREATMENTS :

Sarne as in expt. no. \(56(31)\) on page 129.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/replication and 5 sub-plots/main-plot. (b) \(54^{\prime} \times 60^{\prime}\). (iii) 4 . (iv) (a) and (b) \(18^{\prime} \times 12^{\prime}\). (v) No. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) Yield of seed. (iv) (a) 1956-1958. (b) Yes. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) \(417 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(127 \mathrm{lb} . / \mathrm{ac}\). (b) \(74 \mathrm{lb} . / \mathrm{ac}\). (iii) V effect is highly significant. . R effect is significant. Interaction \(\mathrm{V} \times \mathrm{R}\) is highly significant. (iv) Av . yield of seed in lb./ac.
\begin{tabular}{c|ccccc|c} 
& \(\mathbf{R}_{\mathbf{1}}\) & \(\mathbf{R}_{\mathbf{2}}\) & \(\mathbf{R}_{\mathbf{3}}\) & \(\mathbf{R}_{\mathbf{4}}\) & \(\mathbf{R}_{\mathbf{5}}\) & Mean \\
\hline \(\mathrm{V}_{\mathbf{1}}\) & 495 & 506 & 595 & 495 & 454 & 509 \\
\(\mathrm{~V}_{2}\) & 366 & 290 & 239 & 227 & 187 & 262 \\
\(\mathrm{~V}_{3}\) & 416 & 441 & 558 & 552 & 435 & 480 \\
\hline Mean & 426 & 412 & 464 & 424 & 358 & 417
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll} 
1. \(V\) marginal means & \(=40.2 \cdot \mathrm{lb} . / \mathrm{ac}\). \\
2. R marginal means & \(=30.2 \mathrm{lb} . / \mathrm{ac}\). \\
3. R means at the same level of \(V\) & \(=52.3 \mathrm{lb} . / \mathrm{ac}\). \\
4. \(V\) means at the same level of \(R\) & \(=61.7 \mathrm{lb} / \mathrm{ac}\).
\end{tabular}

Crop :- Mustard.
Site :- Res. Farm, Kokilamukh.

Ref :- As. 55(20).
Type :- ‘CV'.

Object :-To find out the optimum sowing time for different varieties of Mustard.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Mustard. (c) A/S applied at \(200 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) Sandy loam. (b) Refer expt. no. 57(43) on page 114. (vi) As per treatments. (iv) (a) Country method of ploughing, laddering and harrowing. (b) Line sowing. (c) 3 lb /ac. (d) \(1^{\prime}\) between lines. (e) N.A. (v) A/S applied at 200 lb ./ac. 5 davs before each sowing. (vi) As per treatments. (vii) Unirrigated. (viii) Weeding and earih:ng was done after 15 days of each sowing. (ix) \(16.82^{\prime \prime}\). (x) \(\mathrm{D}_{1}-30.12 .1955\) to 11.1.1956, \(\mathrm{D}_{2}-31.1 .1956\) to 6.1.1956, \(\mathrm{D}_{3}-6.2 .1956\) to 132.2 56, \(D_{4}-18.2 .1956\) to 23.21956 and \(D_{5}-2.3 .1956\) to 10.3.1956.

\section*{2. TREATMENTS :}

Main-plot treatments.
5 dates of sowing : \(D_{1}=1.10 .1955, D_{2}=16.10 .1955, D_{3}=31.10 .1955, D_{4}=15.11 .1955\) and \(D_{5}=30.11 .1955\). Sub-plot treatments:

3 varieties: \(\mathrm{V}_{\mathbf{1}}=\mathrm{M}-27\) (Sarson), \(\mathrm{V}_{\mathbf{2}}=\mathrm{M}-2\) (Rai) and \(\mathrm{V}_{3}=\mathrm{M}-60\) (Toria).
3. DESIGN :
(i) Split-plot. (ii) (a) 5 main-plots/block; 3 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) N A. (b)
\(18^{\prime} \times 12^{\prime}\). (v) \(2^{\prime}\) between plots. (vi) Yes.
4. GENERAL :
(i) Growth of Rai variety was better. There was no lodging. (ii) Attacked by saw-fly. Controlled by dusting with Gammexane. (iii) Seed yield, height and tiller count. (iv) (a) 1955-1958. (b) Yes. (c: Nil. (v) ( \(=\) ) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) 504.2 lb ./ac. (ii) (a) \(105.0 \mathrm{lb} . / \mathrm{ac}\). (b) \(76.0 \mathrm{lb} . / \mathrm{ac}\). (jii) Main effects of \(\mathrm{D}, \mathrm{V}\) and interaction \(\mathrm{D} \times \mathrm{V}\) are highly significant. (iv) Av. yield of seed in lb,/ac.
\begin{tabular}{l|lllll:l} 
& \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\) & \(\mathrm{D}_{3}\) & \(\mathrm{D}_{4}\) & \(\mathrm{D}_{5}\) & Mean \\
\hline \(\mathrm{V}_{1}\) & 47.3 & 614.4 & 608.2 & 630.2 & 340.3 & 448.1 \\
\(\mathrm{~V}_{2}\) & 492.4 & 718.4 & 787.8 & 650.7 & 390.7 & 608.0 \\
\(\mathrm{~V}_{3}\) & 241.0 & 564.8 & 518.4 & 623.9 & 334.0 & 456.4 \\
Mean & 260.2 & 632.6 & 638.1 & 634.9 & 355.0 & 504.2
\end{tabular}
S.E. of difference of two
1. D marginal means \(\quad=42.85 \mathrm{lb} . / \mathrm{ac}\).
2. V marginal means \(\quad=2403 \mathrm{lb} / \mathrm{ac}\).
3. \(V\) means at the same level of \(\mathbf{D}=53.73 \mathrm{lb} . / \mathrm{ac}\).
4. \(D\) means at the same level of \(V=61.33 \mathrm{lb} . / \mathrm{ac}\).

\section*{Crop :- Mustard.}

Site :- Res. Farm, Kokilamukh.

Ref :- As. 56(30).
Type :- ‘CV'.

Object :-To find out the optimum sowing period for different varieties of Mustard.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Mustard. 'c) A S at 200 lb ./ac. (ii) (a) Sandy loam. (b) Refer expt. no. 57(43; on page 1:4.
(iii) As per treatments. 'iv a) Country method of ploughing, laddering and harrowing. (b) Line sowizg.
(c) 3 srs ac. (d) \(1^{\prime}\) between lines. (e) N.A. (v) A/S applied at \(200 \mathrm{lb} . / \mathrm{ac}\). 5 days before sowing. (vi) As per treatments. (vii) Unirrigated. (viii) Weeding and earthing 15 days after sowing. (ix) \(17.18^{\prime \prime}\). x: \(D_{1}-10.1 .1957, D_{2}-24.1 .1957, D_{3}-4.2 .1957, D_{4}-14.2 .1957\) and \(D_{5}-5.31957\).
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 55 (20) en page 131.
4. GENERAL :
(i) Growth of Rai was better. (ii) Attack of white rust-controlled by spraying copper fungicide. (iii، Seed yield, height and tiller count. (iv; (a) 1955-1956. (b) Yes. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) \(459.6 \mathrm{~b} . / \mathrm{ac}\). (ii; \{a; 142.0 lb ./ac. (b) 168.2 lb ./ac. (iii) Main effect of D is highly significant. Main effect of \(V\) is significant. ,iv; Av. yie d of seed in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{c|ccccc|c} 
& \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\) & \(\mathrm{D}_{3}\) & \(\mathrm{D}_{\mathbf{4}}\) & \(\mathrm{D}_{6}\) & Mean \\
\hline \(\mathrm{V}_{1}\) & 145.0 & 762.6 & 642.8 & 352.9 & 264.7 & 433.6 \\
\(\mathrm{~V}_{2}\) & 290.3 & 838.2 & 664.9 & 570.3 & 409.6 & 55.5 .2 \\
\(\mathrm{~V}_{3}\) & 59.9 & 601.8 & 661.7 & 438.0 & 189.1 & 390.1 \\
\hline CMean & 166.0 & 734.2 & 656.5 & 453.8 & 287.8 & 459.6
\end{tabular}
S.E. of difference of two
1. D marginal means \(\quad=58.0 \mathrm{lb} . / \mathrm{ac}\).
2. \(V\) marginal means \(\quad=53.2 \mathrm{ib} . / \mathrm{ac}\).
3. V means at the same level of \(\mathbf{D} \quad=118.9 \mathrm{lb} . / \mathrm{ac}\).
4. \(D\) means at the same level of \(Y=113.1 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Mustard.
Site :- Res. Farm, Kokilamukh,

Ref :- As. 57(17).
Type :- 'CV'.

Object :-To find out the optimum sowing period for different varieties of Mustard.
1. BASAL CONDITIONS:
. (i) (a) Nil. (b) Mustard. (c) A/S applied at \(200 \mathrm{lb} . / \mathrm{ac}\). (ii) Sandy loam. (b) Refer expt. no. 57(43) on page 114. (iii) As per treatments. (iv) (a) Country method of ploughing, laddering and harrowing. (b) Line sowing. (c) \(3 \mathrm{srs} / \mathrm{ac}\). (d) \(1^{\prime}\) between lines. (e) N.A. (v) A/S at 200 lb ./ac. applied 5 days before each sowing. (vi) As per treatments. (vii) Unirrigated. (viii) Weeding and earthing 15 days after each sowing. (ix) \(11.55^{\prime \prime}\). (x) \(\mathrm{D}_{1}-16.1 .1958, \mathrm{D}_{2}-28.1 .1958, \mathrm{D}_{3}-10.2 .1958, \mathrm{D}_{4}-19.2 .1958\) and \(\mathrm{D}_{5}-4.3 .1958\).
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 55(20) , n page 131.
GENERAL :
(i) Growth of Rai plots was better. There was no lodging. (ii) Nil. (iii) Seed yield, height and tiller count. (iv) (a) 1955-1958. (b) Yes. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) \(314.3 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(162.3 \mathrm{lb} . / \mathrm{ac}\). (b) 91.69 lb ./ac. (iii) Main effects of \(\mathrm{D}, \mathrm{V}\) and interaction \(\mathrm{D} \times \mathrm{V}\) are all highly significant. (iv) Av. yield of seed in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|lllll|l} 
& D. & \(\mathrm{D}_{2}\) & \(\mathrm{D}_{3}\) & \(\mathrm{D}_{4}\) & \(\mathrm{D}_{5}\) & \multirow{2}{*}{ Mean } \\
\hline \(\mathrm{V}_{1}\) & 239.5 & 346.6 & 227.3 & 346.6 & 88.2 & 259.6 \\
\(\mathrm{~V}_{2}\) & 579.8 & 617.6 & 526.2 & 453.8 & 176.5 & 470.88 \\
\(\mathrm{~V}_{3}\) & 116.6 & 337.2 & 390.7 & 113.4 & 104.0 & 212.4 \\
\hline Mean & 312.0 & 433.8 & 398.1 & 304.6 & 122.9 & 314.3.
\end{tabular}
S.E. of difference of two
\(\begin{array}{ll}\text { 1. } \text { D marginal means } & =66.27 \mathrm{lb} . / \mathrm{ac} . \\ \text { 2. } V \text { marginal means } & =28.99 \mathrm{lb} . / \mathrm{ac} . \\ \text { 3. } V \text { means at the same level of } D=64.84 \mathrm{lb} . / \mathrm{ac} . \\ \text { 4. } D \text { means at the same level of } V=84.81 \mathrm{lb} . / \mathrm{ac} .\end{array}\)

\section*{Crop :- Mustard (Rabi). Site :- Res. Farm, Kokilamukh.}

\section*{Ref : As. 58 (28). \\ Type :- ‘CV'.}

Object:-To find out the optimum sowing period for different varieties of Mustard.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) Sandy loam. (b) Refer expt. no. 57 (43) on page 114. (iii) As per treatments. (iv) (a) Ploughing followed by laddering. (b) Broadcasting. (c) \(6 \mathrm{lb} . / \mathrm{ac}\). (d) and (e) -. (v) A.S at 200 lb./ac. (vi) As per treatments. (vii) Unirrigated. (viii) Nil. (ix) N.A. (x) 30.1.1959, 12, 23.2.1959 and 6.3.1959.
2. TREATMENTS :

Main-plot treatments:
4 dates of sowing : \(\mathrm{D}_{1}=16.10 .1958, \mathrm{D}_{2}=31.10 .1958, \mathrm{D}_{3}=15.11 .1958\) and \(\mathrm{D}_{4}=30.11 .1958\).
Sub-plot treatments :
3 varieties: \(\mathrm{V}_{1}=\mathrm{M}-27\) (Sarson), \(\mathrm{V}_{2}=\mathrm{M}-2\) (Rai) and \(\mathrm{V}_{3}=\mathrm{M}-60\) (Toria).
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/replication; 3 sub-plots/main-plot. (b) \(54^{\prime} \times 60^{\prime}\). (iii) 4. (iv) (a) \(: 2^{\prime} \times 18^{\prime}\). (b) \(10^{\prime} \times 16^{\prime}\). (v) \(1^{\prime}\) alround. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) Yield of seed. (iv) (a) 1955-1958. (b) Yes. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) 483 lb .'ac. (ii) (a) \(194 \mathrm{lb} . / \mathrm{ac}\). (b) 94 lb .'ac. (iii) None of the effects is significant. (iv) Av. yie'd of seed in lb . ac .
\begin{tabular}{c|cccc|c} 
& \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\) & \(\mathrm{D}_{3}\) & \(\mathrm{D}_{\mathbf{4}}\) & Mean \\
\begin{tabular}{c} 
\\
\(\mathrm{V}_{1}\)
\end{tabular} & 459 & 621 & 502 & 442 & 506 \\
\(\mathrm{~V}_{\mathbf{3}}\) & 417 & 501 & 544 & 383 & 464 \\
596 & 451 & 485 & 383 & 479 \\
\hline Mean & 491 & 527 & 510 & 403 & 483
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll} 
1. \(\mathbf{D}\) marginal means & \(=79.2 \mathrm{lb} . / \mathrm{ac}\). \\
2. V marginal means & \(=33.2 \mathrm{lb} . / \mathrm{ac}\). \\
3. V means at the same level of \(\mathbf{D}\) & \(=47.0 \mathrm{lb} . / \mathrm{ac}\). \\
4. D means at the same level of \(V\) & \(=96.0 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Mustard (Rabi).
Site :- Res. Farm, Kokilamukh.

Ref :- As. 58(52).
Type :- ‘D’.

Object:-To find out suitable pesticide to control saw-fly in Mustard.
1. BASAL CONDITIONS:
(i) (a) No. (b) Mustard. (c) N.A. (ii: (1) Sandy loam. (b) Refer expt. no. 57(43) on page 114. (iii) 2.12.1958. ,iv) (a) P'oughing and harrowing. (b) Broadcasting. (c) to (e) N.A. (v) Nil. (vi, Local. (vii) Unirrigated. (viii' Nil. 'ix) N.A. ( \(x\) ', 3, 4 and 6.3.1959.
2. TREATMENTS :

6 treatments : \(D_{0}=\) Control, \(D_{1}=\) Gammexane dust at \(12 \mathrm{lb} . / \mathrm{ac} ., \mathrm{D}_{2}=\) Dieldrex dust at \(12 \mathrm{lb} . / \mathrm{ac} ., \mathrm{D}_{3}=\) Endrex at 1 lb . in \(300 \mathrm{lb} . / \mathrm{ac}\). of water, \(\mathrm{D}_{4}=\) Guesarol at 1 lb . in \(300 \mathrm{lb} . / \mathrm{ac}\). of water and \(\mathrm{D}_{5}=\) Hexidol at 1 lb . in 300 lb ./ac. of water.
3. DESIGN :
(i) R.B.D. (ii) (a) 6 . (b) \(72^{\prime} \times 13^{\prime}\). (iii) 5 . (iv) (a) \(13^{\prime} \times 12^{\prime}\). (b) \(12^{\prime} \times 11^{\prime}\). \(\left\langle v^{\prime} \frac{1^{\prime}}{2^{\prime}} \times \frac{1^{\prime}}{2}\right.\). (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Attack of saw-fly. Control measures as per treatments. (iii) 3 sq . ft area was selected at random from each plot and percentage of affected plants observed. (iv) (a) 1958-contd. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(5.73 \%\).
(ii) \(2.33 \%\).
(iii) Treatment differences are highly significant.
(iv) Av. percentage of affected plants.
\begin{tabular}{lcccccc} 
Treatment & \(\mathrm{D}_{0}\) & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{\mathbf{2}}\) & \(\mathrm{D}_{\mathbf{3}}\) & \(\mathrm{D}_{\mathbf{4}}\) & \(\mathrm{D}_{5}\) \\
Av. percentage & 9.3 & 6.28 & 6.78 & 3.95 & 3.64 & 4.41 \\
& & & & & & \\
& S.E. \(/\) mean & \(=\) & \(1.04 \%\) & & & \\
&
\end{tabular}

\section*{Grop:- Mustard (Rabi). \\ Site :- Res. Farm, Kokilamukh.}

\section*{Ref :- As. 59(49). \\ Type :- 'D'.}

Object :-To find out suitable pesticide to control saw-fly in Mustard.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Mustard. (c) N.A. (ii) (a) Sandy loam. (b) Refer expt; no. \(57(43\) ) on page 114. (iii) 6.12.1959. (iv) (a) Ploughing, harrowing. (b) Broadcasting. (c) to (e) N.A. (v) Nil. (vi) Local. (vii) Unirrigated. (viii) Nil. (ix) N.A. (x) 3, 4.3.1960.
2. TREATMENTS:

7 treatments : \(\mathrm{D}_{0}=\) Control, \(\mathrm{D}_{1}=\) Gammexane dusting at \(12 \mathrm{lb} . / \mathrm{ac}\)., \(\mathrm{D}_{2}=\) Endrex at \(30 \mathrm{c.c}\). in 30 gallons of water per acre, \(D_{3}=\) Guesarol at \(1 \mathrm{lb} . / \mathrm{ac}\). in 30 gallons of water, \(\mathrm{D}_{4}=\) Hexidol W.D P. at 30 gallons of water, \(D_{5}=\) Paramar 50 at 30 c.c. in 30 gallons/ac. of water and \(D_{6}=\) N.A.
3. DESIGN :
(i) R.B.D.
(ii) (a) 7.
(b) \(147^{\prime} \times 16^{\prime}\).
(iii) 5 .
(iv) (a) \(21^{\prime} \times 16^{\prime}\).
(b) \(20^{\prime} \times 15^{\prime}\).
(v) \(6^{\prime \prime} \times 6^{\prime \prime}\).
(vi) Yes.
4. GENERAL :
(i) Poor. (ii) Attack of saw-fly. Control measures as per treatments. (iii) 3 sq . ft . area was selected at random from each plot and percentage of affected plants observed. (iv) (a) 1958-contd.-(b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(6.37 \%\). (ii) \(0.66 \%\). (iii) Treatment differences are highly significant. (iv) Av. percentage of affected plants.
\begin{tabular}{lccccccc} 
Treatment & \(\mathrm{D}_{\mathbf{0}}\) & \(\mathrm{D}_{\mathbf{1}}\) & \(\mathrm{D}_{\mathbf{2}}\) & \(\mathrm{D}_{\mathbf{3}}\) & \(\mathrm{D}_{\mathbf{4}}\) & \(\mathrm{D}_{5}\) & \(\mathrm{D}_{6}\) \\
Av. percentage & 9.59 & 6.54 & 4.12 & 5.57 & 6.42 & 4.20 & 8.16 \\
& & & & & & &
\end{tabular}

\section*{Crop :- Ginger ( \(R a b i\) ).}

Site :- Ginger Res. Stn., Naya Bunglow.

Ref - 56(37).
Type :- 'M'.

Object :-To study the effect of different levels of \(N, P\) and \(K\) on Ginger crop.
1. BASAL CONDITIONS :
(i) (a) to (c) Nil. (ii) (a) Red loam. (b) N.A. (iii) 26.4056 (iv) (a) Ploughing, pulverising and weeding.' (b) Planting in double rows. (c) N.A. (d) \(12^{\prime \prime}\) between plants and \(2^{\prime}\) between double rows. (e) One rhizome shoot/hole. (v) Cowdung at \(250 \mathrm{mds} / \mathrm{ac}\). applied. (vi) \(\mathrm{G}-55 / 7\) local. (vii) Unirrigated. (viii) Weeding and earthing twice. (ix) \(69.09^{\prime \prime}\). (x) \(5,6.2 .1957\).

2 TREATMENTS:
All combinations of (1), (2) and (3)
(1) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20\) and \(\mathrm{N}_{2}=40 \mathrm{lb}\)./ac.
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=20\) and \(\mathrm{P}_{2}=40 \mathrm{lb}\). ac.
(3) 3 levels of \(\mathrm{K}_{2} \mathrm{O}: \mathrm{K}_{0}=0, \mathrm{~K}_{1}=20\) and \(\mathrm{K}_{2}=40 \mathrm{lb}\)./ac.
3. DESIGN :
(i) \(3^{3}\) confd.
(ii) (a) 9 .
(b) N.A.
(iii) 4.
(iv) (a) \(9^{\prime} \times 11^{\prime} .3\) (b) \(7^{\prime} \times 10^{\prime}\).
(v) One row all round \{v; Yes.
4. GENERAL :
(i) Good. (ii) No. (iii) Yield of rhizomes. (iv) (a) 1956-N.A. (b) No. (c) Nil. iv) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 6465 lb ./ac. (ii) 2054 lb ./ac. (iii) Only P and K effects are significant. (iv) Av. yield of rhizome in lb ./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathrm{P}_{2}\) & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) & \(\mathrm{K}_{2}\) & Mean \\
\hline \(\mathrm{N}_{0}\) & 5393 & 6119 & 7779 & 5393 & 6327 & 7571 & 6430 \\
\hline \(\mathrm{N}_{1}\) & 5601 & 5808 & 7779 & 5704 & 6638 & 6845 & 6396 \\
\hline \(\mathrm{N}_{2}\) & 6534 & 7156 & 6019 & 5912 & 6949 & 6845 & 6569 \\
\hline Mean & 5843 & 6361 & 7192 & 5670 & 6638 & 7087 & 6465 \\
\hline \(\mathrm{K}_{0}\) & 4875 & 5601 & 6534 & & & & \\
\hline \(\mathrm{K}_{1}\) & 5704 & 6949 & 7260 & & & & \\
\hline \(\mathrm{K}_{2}\) & 6949 & 6534 & 7779 & & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of N, P or K marginal mean & \(=342 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of any table & \(=593 \mathrm{lb} \cdot / \mathrm{ac}\).
\end{tabular}
\begin{tabular}{ll} 
Crop :- Ginger (Rabi). & Ref:- As. \(57(33)\). \\
Site :- Ginger Res. Stn., Naya Bunglow. & Type :- ‘M'.
\end{tabular}

Object:-To study the effect of different levels of \(\mathrm{N}, \mathrm{P}\) and K on Ginger crop.
1. BASAL CONDITIONS :
(i) (a) to (c) No. (ii) (a) Red loam. (b) N.A. (iii) 2.5.1957. (iv) (a) Ploughing, pulverising and weeding. (b) Planting in double rows. (c) N.A. (d) \(12^{\prime \prime}\) between plants and \(2^{\prime}\) between double rovs. (e; One ihizome shoot/hole. (v) Cowdung at \(250 \mathrm{mds} / \mathrm{ac}\) applied. (vi) G-55/7 local. (vii) Unirrigated. (viii; Weeding and earthing twice. (ix) \(74.64^{*}\). ( \(x\) ) 11 to 14.12.1957.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 56(37) on page 135.
4. GENERAL :
(i) Not good. (ii) Attacked by rhizome rot. Sprayed Perenox and Bordeaux's mixture. (iii, Yield of rhizomes. (iv) (a) 1956 N.A. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(1613 \mathrm{lb} . / \mathrm{ac}\). (ii) \(632 \mathrm{lb} . / \mathrm{cc}\). (iii) Ňcre of the effects is significant. (iv) Av. yield of rhizeme in \(\mathrm{lb} / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{P}_{0}^{\prime}\) & \(\mathrm{P}_{1}\) & \(\mathrm{P}_{2}\) & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{7}\) & \(\mathrm{K}_{2}\) & Mean \\
\hline \(\mathrm{N}_{0}\) & 1608 & 1711 & 1659 & 1867 & 1556 & 1556 & 1659 \\
\hline \(\mathrm{N}_{1}\) & 1556 & 1659 & 1867 & 1400 & 1711 & 1971 & 1694 \\
\hline \(\mathrm{N}_{2}\) & 1348 & 1815 & 1296 & 1556 & 1193 & 1711 & 1487 \\
\hline Mean & 1504 & 1728 & 1607 & 1608 & 1487 & 1746 & 1613 \\
\hline \({ }^{-} \mathrm{K}_{0}{ }^{\circ}\) & 1556 & 1608 & 1659 & & & & \\
\hline \(\mathrm{K}_{1}\) & 1245 & 17.11 & 1504 & & & & \\
\hline \(\mathrm{K}_{2}\) & 1711 & 1867 & 1659 & & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of \(\mathrm{N}, \mathrm{P}\) or K marginal mean & \(=105 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of any table & \(=182 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :- Ginger.}

Site :- Gingér Res. Stn., Naya Bunglow.
Ref :- As. 58(12).
Type :- \(\mathbf{~}^{\mathbf{M}}{ }^{\prime}\).

Object :-To study the effect of different levels of \(\mathbf{N}, \mathbf{P}\) and K on Ginger crop.
1. BASAL CONDITIONS :
(i) (a) to (c) No. (ii) (a) Red loam. (b) N.A. (iii) 30.4.1958. (iv) (a) Ploughing, pulverising and weeding. (b) Planting in double rows. (c) N.A. (d) \(12^{\prime \prime}\) between plants and \(2^{\prime}\) between double rows. (e) One rhizome shoot/hole. (v) Cowdung at \(250 \mathrm{mds} / \mathrm{ac}\). applied. (vi) G-55/1 Nádia (late). (vii) Unirrigated. (viii) Weeding and earthing twice. (ix) \(74.74^{\prime \prime}\). (x) 30 and 31.12.1958.
2. TREATMENTS and 3. DESIGN:

Same as in expt. no. 56(37) on page 135.
4. GENERAL :
(i) Medium.
(ii) No. (iii) Yield of rhizomes. (iv) (a) 1956 -N.A.
(b) No. (c) Nil. (v) (a) and (b) N.A.
(vi) and (vii) Nil.
5. RESULTS:
(i) \(4.091 \mathrm{lb} . / \mathrm{ac}\). (ii) \(1245 \mathrm{lb} / \mathrm{ac}\). (iii) Interaction \(\mathrm{N} \times \mathrm{P}\) is significant. No other effect is significant.
(iv) Av. yield of rhizome in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathrm{P}_{2}\) & \(\mathrm{K}_{0}\) & \(\mathrm{K}_{1}\) & \(\mathrm{K}_{2}\) & Mean \\
\hline \(\mathrm{N}_{0}\) & 3526 & 4667 & 3786 & -3319 & 3967 & 4693 & 3993 \\
\hline \(\mathrm{N}_{1}\) & 4149 & 4900 & ,4149 & 4382 & 4563 & 4252 & 4399 \\
\hline \(\mathrm{N}_{2}\) & 4641 & 3630 & 3371 & 3993 & 4122 & 3526 & 3881 \\
\hline Mean & 4105 & 4399 & 3769 & 3898 & 4218 & 4157 & 4091 \\
\hline \(\mathrm{K}_{0}\) & 3423 & 4512 & 3760 & & & & \\
\hline \(\mathrm{K}_{1}\) & 4097 & 4512 & 4045 & & & & \\
\hline \(\mathrm{K}_{2}\) & 4797 & 4172 & 3500 & & & & \\
\hline
\end{tabular}
S.E. of \(\mathrm{N}_{3} \mathrm{P}\) or K marginal mean
\(=207 \mathrm{lb} . / \mathrm{ac}\).
S.E. of body of any table
\(=359 \mathrm{lb} . / \mathrm{ac}\).

\section*{Grop :- Ginger (Rabi). \\ Site :- Ginger Res. Stn., Naya Bunglow.}

Ref:- As. 56(36).

Object :-To find out the effect of different forms of N on Ginger crop.
1. BASAL CONDITIONS :
(i) (a) to (c) Nil. (ii) (a) Red loam. (b) N.A. (iii) 24.4.1956. (iv) (a) Ploughing, pulverising and weeding. (b) Planting in double rows. (c) N.A. (d) \(12^{\prime \prime}\) between plants and \(2^{\prime}\) between double rows. (e) One rhizome shoot;hole. (v' Cowdung at 250 mds 'ac. (vi) \(G-55 / 7\) (local). (vii) Unirrigated. (viii) Weeding and earthing twice. (ix; 69.09*. (x) 29.1.1957.
2. TREATMENTS :

All combinations of \(\{1\}\) and (2) + a control
(1) 2 levels of \(\mathrm{N}: \mathrm{N}_{1}=20\) and \(\mathrm{N}_{2}=40 \mathrm{lb} . / \mathrm{ac}\).
(2) 3 sources of \(\mathrm{N}: \mathrm{S}_{1}=\mathrm{A} / \mathrm{S}, \mathrm{S}_{2}=\) Mustard oilcake and \(\mathrm{S}_{3}=\mathrm{A} / \mathrm{S}+\) mustard oilcake.
3. DESIGN :
(i) R.B.D. (ii) (a) 7. (b) \(77^{\prime} \times 14^{\prime}\). (iii) 4. (iv) (a) \(11^{\prime} \times 14^{\prime}\). (b) \(10^{\prime} \times 12^{\prime}\). (v) One line on all sides. (vi) Yes.
4. GENERAL :
(i) Good. ii) No. (iii) Yield of rhizomes. (iv) (a) 1956-N.A. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii; Nil.

\section*{5. RESULTS :}
(i) 4409 lb . \({ }^{\text {acc. }}\) (ii) \(948.8 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the effects is si gnificant. (iv) Av. yield of rhizome in \(\mathrm{lb} . / \mathrm{ac}\).

Control \(=3812 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|}
\hline & \(S_{1}\) & \(\mathrm{S}_{2}\) & \(\mathrm{S}_{3}\) & Mean \\
\hline \(\mathrm{N}_{1}\) & 3993 & 4901 & 4356 & 4417 \\
\hline \(\mathrm{N}_{2}\) & 4356 & 4719 & 4719 & 4598 \\
\hline Mean & 4175 & 4810 & 4538 & 4508 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of marginal mean of N & \(=273.9 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of marginal mean of S & \(=335.4 \mathrm{lb} / \mathrm{ac}\), \\
S.E. of body of table & \(=474.4 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
```

Crop :- Ginger (Rabl).
Site :- Ginger Res. Stn., Naya Bunglow.

> Ref :- As. $57(32)$.
> Type :- ' \mathbf{M} '.

```

Object :-To see the effect of different forms of N on Ginger crop.

\section*{1. BASAL CONDITIONS :}
(i) (a) No. (b) Ginger. (c) Nil. (ii) (a) Red loam. (b) N.A. (iii) 4.5.1957. (iv) 'a) Plougaing, pulverising and weeding. (b) Planting in double rows. (c) N.A. (d; \(12^{\prime \prime}\) between plants and \(2^{\prime}\) between double rows. (e) One rhizome shoot/hole. (v) Cowdung at 250 mds ./ac. (vi) \(\mathrm{G}-55 / 7\) (local). (vii) Unirrigated. viii) Weeding and earthing twice. (ix) \(74.64^{\prime \prime}\). (x) 10.12.1957.
2. TREATMENTS and 3. DESIGN:

Same as in expt. no. 56(36; above.
4. GENERAL :
(i) Not good. (ii) Affected by rhizome rot ; Perenox and Bordeaux's mixture sprayed. (iii) Yield of rhizome. (iv', (a) 1956-N.A. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 1180 lb. ac. (ii)' 540.9 lb .'ac. (iii) None of the effects is significant. (iv) Av. yield of rhizomes in :b. lac.
\[
\text { Control }=817 \mathrm{lb} . / \mathrm{ac}
\]
\begin{tabular}{c|ccc|c} 
& \(\mathrm{S}_{1}\) & \(\mathrm{~S}_{2}\) & \(\mathrm{~S}_{3}\) & Mean \\
\hline \begin{tabular}{c}
\(\mathrm{N}_{1}\) \\
\(\mathrm{~N}_{2}\)
\end{tabular} & \begin{tabular}{rrr}
1452 & 1361 & 817 \\
1089 & 998 & 1724
\end{tabular} & \begin{tabular}{l}
1210 \\
1270
\end{tabular} \\
\hline Mean & 1271 & 1179 & 1271 & 1240
\end{tabular}
\begin{tabular}{ll} 
S.E. of marginal mean of N & \(=156.1 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of marginal mean of \(\mathbf{S}\) & \(=191.2 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table & \(=270.4 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop:- Ginger.}

\section*{Site :- Ginger Res. Stn., Naya Bunglow.}

Object :--To see the effect of different forms of N on Ginger crop.
BASAL CONDITIONS :
(i) (a) No (b) Ginger. (c) As per treatments. (ii) (a) Red loam. (b) N.A. (iii) 28.4.1958. (iv) (a) Ploughing, pulverising and weeding. (b) Plantation in double rows. (c) N.A. (d) \(12^{\prime \prime}\) between plants and \(2^{\prime}\) between double rows. (e) One rhizome shoot/hole. (v) Cowdung at \(250 \mathrm{mds} / \mathrm{ac}\). (vi) G-55/7 (local). (vii) Unirrigated. (viii) Weeding and earthing twice. (ix) \(74.74^{\prime \prime}\). (x) 26.12.1958.
2. TREATMENTS and 3. DESIGN :

Same as in expt. no. 56(36) on page 138.
4. GENERAL :
(i) Not good. (ii) Whole experiment was attacked by rhizome rot. Perenox and Bordeaux's mixture were sprayed. (iii) Yield of rhizomes. (iv) (a) \(1956-\) N.A. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
; (i) \(597 \mathrm{lb} . / \mathrm{ac}\). (ii) \(609.8 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the effects is significant. (iv) Av. yield of rhizome in \(\mathrm{lb} . / \mathrm{ac}\).
Control \(=681 \mathrm{lb} / \mathrm{ac}\).
\begin{tabular}{l|lll|l} 
& \(\mathrm{S}_{1}\) & \(\mathrm{~S}_{2}\) & \(\mathrm{~S}_{3}\) & Mean \\
\hline \(\mathrm{N}_{1}\) & 363 & 590 & 726 & 560 \\
\(\mathrm{~N}_{2}\) & 454 & 681 & 681 & 605 \\
\hline Mean & 409 & 636 & 704 & 583
\end{tabular}
\begin{tabular}{ll} 
S.E. of marginal mean of N & \(=176.0 \mathrm{lb} \cdot / \mathrm{ac}\). \\
S.E. of marginal mean of S & \(=215.6 \mathrm{lb} \cdot \mathrm{ac}\) \\
S.E. of body of table & \(=304.9 \mathrm{lb} \cdot / \mathrm{ac}\).
\end{tabular}

\section*{Grop :- Ginger (Rabi).}

Site :- Ginger Res. Stm., Naya Bumglow.

\section*{Ref :- As. 56(34).}

Type :- 'C'.
Object :-To determine the best time and method of planting for Ginger crop.'
1. BASAL CONDITIONS :
(i) (a) to (c) Nil. (ii) (a) Red loam. (b) N.A. (iii) As per treatments. (iv) (a) Ploughing, pulverising and weeding. (b) As per treatments. (c) N.A. (d) As per treatments. (e) One rhizome shoot/hole.
(v) \(250 \mathrm{mds} / \mathrm{ac}\). of cowdung before planting. (vi) \(G-55 / 7\) (local). (vii) Unirrigated. (viii) Weeding and earthing twice. (ix) \(69.09^{\prime \prime}\). (x) 25.1.1957.

\section*{2. TREATMENTS :}

Main-plot treatments :
2 methods of planting: \(\mathrm{M}_{1}=\) Planting in double rows with \(12^{\prime \prime}\) spacing between plants and \(2^{\prime}\) beiveen rows. \(\mathrm{M}_{2}=\) Planting in single rows with \(12^{\prime \prime}\) spacing between plants and \(1 \mathbf{v}^{\prime}\) between rows.

\section*{Sub-plot treatments :}

4 dates of planting: \(D_{1}=1.4 .1956, D_{2}=11.4 .1956, D_{3}=21.4 .1956\) and \(D_{4}=1.5 .1956\).
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/replication; 4 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) \(11^{\prime} \times 17^{\prime}\). (b) \(10 \times 15^{\prime}\). (v) One line alround. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Yield of rhizomes. (iv) (a) \(1956-\) N.A. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(3145 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) 2412 lb. 'ac. (b) \(830 \mathrm{lb} . / \mathrm{ac}\). (iii) None of the effects is significant. (iv) Av. yield of rhizome in \(\mathrm{Ib} . / \mathrm{ac}\).

S.E. of difference of two
\begin{tabular}{ll} 
1. M marginal means & \(=988 \mathrm{lb} . / \mathrm{ac}\). \\
2. \(D\) marginal means & \(=479 \mathrm{~b} . / \mathrm{ac}\). \\
3. M means at the same level of D & \(=1149 \mathrm{lb} . / \mathrm{ac}\). \\
4. \(D\) means at the same level of M & \(=678 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
```

Crop :- Ginger (Rabi).
Ref :- As. 57(30).
Site :- Ginger Res. Stn., Naya Bunglow.
Type :- 'C'.

```

Object :-To determine the best time and method of planting for Ginger crop.
1. BASAL CONDITIONS :
(i. (a) to (c) Nil. (ii) (a) Red loam. (b) N.A. (iii) As per treatments. (iv) 'a' Ploughing, p siver.song and weeding. (b) As per treatments. (c) N.A. (d) As per treatments. (e) One rhizome shorthole 250 md ./ac. of cowdung before planting. (vi) G-55,7 (local). (vii) Unirrigated. (viii) Wec fing und earthing twice. (ix' \(74.64^{\prime \prime}\). (x) 20.1.1958.
2. TREATMENTS :

Main-plot treatments :
Same as in expt. no. \(56(34)\) on page 139.
Sub-plot treatments :
4 dates of planting: \(\mathrm{D}_{1}=1.4 .1957, \mathrm{D}_{2}=11.4 .1957, \mathrm{D}_{3}=21.4 .1957\) and \(\mathrm{D}_{4}=15.1957\).
3. DESIGN and 4. GENERAL:

Same as in expt. no. 56.34) on page 139.
5. RESULTS :
(i) \(9353 \mathrm{lb} \cdot / \mathrm{ac}\)
(ii) (a) \(2386 \mathrm{lb} \cdot / \mathrm{ac}\).
(b) \(1258 \mathrm{lb} . / \mathrm{ac}\)
effect is significant. (iv) Av. yield of rhizome in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{D}_{1}\) & D \({ }_{2}\) & \(\mathrm{D}_{3}\) & \(\mathrm{D}_{4}\) & Mean \\
\hline \(\mathrm{M}_{1}\) & 7163 & 11519 & 8712 & 8228 & 8906 \\
\hline \(\mathrm{M}_{2}\) & 10067 & 11132 & 9002 & 9002 & 9801 \\
\hline Mean & 8615 & 11326 & 8857 & 8615 & 9353 \\
\hline
\end{tabular}
S.E. of difference of two
1. \(M\) marginal means
\(=974 \mathrm{Ib} . / \mathrm{ac}\).
2. D marginal means
\(=726 \mathrm{lb} . / \mathrm{ac}\).
3. \(M\) means at the same level of \(D\)
\(=1319 \mathrm{lb} / \mathrm{ac}\).
4. D means at the same level of M
\(=1027 \mathrm{lb} . / \mathrm{ac}\).

\section*{Crop:- Ginger.}

\section*{Site :- Ginger Res. Stri., Naya Bunglow.}

Ref :- As. 58(9).
Type:- ' C '.

Object :-To determine the best time and method of planting for Ginger crop.
1. BASAL CONDITIONS :
(i) (a) to (c) Nil. (ii) (a) Red loamy soil. (b) N.A. (iii) As per treatments. (iv) (a) Ploughing, pulverising and weeding. (b) As per treatments. (c) N.A. (d) As per treatments. (e) One rhizome shoot/hole. (v) \(250 \mathrm{mds} / \mathrm{ac}\). of cowdung before planting. (vi) \(\mathrm{G}-55 / 7\) (local). (vii) Unirrigated. (viii) Weeding and earthing-2 times. (ix) \(74.74^{\prime \prime}\). (x) 3.2.1959.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 56(34) on page 139.
5. RESULTS:
(i) \(3781 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) \(1089 \mathrm{lb} . / \mathrm{ac}\). (b) \(1011 \mathrm{lb} . / \mathrm{ac}\). (iii) Effect of D is highly significant. No other effect is significant. (iv) Av. yield of rhizome in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\) & \(\mathrm{D}_{3}\) & \(\mathrm{D}_{4}\) & Mean \\
\hline \(\mathrm{M}_{1}\) & 4598 & 5034 & 3436 & 2033 & 3775 \\
\hline \(\mathrm{M}_{2}\) & 5808 & 4501 & 2807 & 2033 & 3787 \\
\hline Mean & 5203 & 4767 & 3122 & 2033 & 3781 \\
\hline
\end{tabular}
S.E. of difference of two
1. M marginal means
\(=444 \mathrm{lb} / \mathrm{ac}\).
2. \(D\) marginal means
\(=584 \mathrm{lb} . / \mathrm{ac}\).
3. M means at the same level of \(\mathbf{D} . \quad=842 \mathrm{lb} . / \mathrm{ac}\).
4. D means at the same level of \(\mathrm{M} \quad=826 \mathrm{lb} / \mathrm{ac}\).
Crop :- Ginger (Rabi).
Site :- Ginger Res. Stm., Naya Bunglow.

Ref :- As. 56(35).
Type :- \({ }^{6} \mathrm{C}^{\prime}\).

Object :-To determine the best time of harvesting for Ginger crop.

\section*{1. BASAL CONDITIONS :}
(i) (a) to (c) Nil. (ii) (a) Red loam. (b) N.A. (iii) 10.4.1956. (iv) (a) Ploughing, pulverising and 2 weedings. (b) Planting in double rows. (c) N.A. (d) \(12^{\prime \prime}\) between plants and \(2^{\prime}\) between double rows. (e) One rhizome shoot/hole. (v) Cowdung applied at \(250 \mathrm{mds} / \mathrm{ac}\). at the time of planting the rhizomes. (vi) \(\mathrm{C}-55 / 7\) (local). (vii) Unirrigated. (viii) Earthing and weeding twice. (ix) \(69.07^{\prime \prime}\). (x) As per treatments.

\section*{2. TREATMENTS :}

4 dates of harvesting: \(D_{1}=20.11 .1956, D_{2}=6.12 .1956, D_{3}=21.12 .1956\) and \(D_{4}=6.1 .1957\).
3. DESIGN :
(i) R.B.D.
(ii) (a) 4. (b) N.A.
(iii) 6 . (iv) (a) \(7^{\prime} \times 22^{\prime}\).
(b) \(5^{\prime} \times 20^{\prime}\).
(v) \(1^{\prime}\) alround the net plot. (vi) Yes.
4. GENERAL:
(i) Good. (ii) A few plants were attacked by rhizome rot. Bordeux's mixture and Perenox were sprayed. (iii) Yield of rhizomes. (iv) (a) 1956--N.A. (b) No. (c) Nil. (v) (a) and (b, N.A. (vi) and (vii, Nil.
5. RESULTS :
(i) 6244 lb ./ac. (ii; 1162 lb ./ac. (iii) Treatment differences are significant. (iv) Av. yield of rt.zome in lb ./ac.
\begin{tabular}{llccc} 
Treatment & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\) & \(\mathrm{D}_{3}\) & \(\mathrm{D}_{4}\) \\
Av. yield & 5663 & 5953 & 7550 & 5808 \\
& & & & \\
& S.E. \(/\) mean & \(=\) & \(474.3 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}
\begin{tabular}{ll} 
Crop :- Ginger. & Ref:- As. 58(10). \\
Site :- Ginger Res. Stn., Naya Bunglow. & Type :- ‘C'.
\end{tabular}

Object:-To determine the best time of harvesting Ginger crop.

\section*{1. BASAL CONDITIONS :}
(i) (a; to (c) Nil. (ii) (a) Red loam. (b) N.A. (iii) 24.4.1958. (iv) (a) Floughing, pulverising and weeding. (b) Planting in double rows. (c) N.A. (d) \(12^{\prime}\) between plants and \(2^{\prime}\) between double rows e) One rhizon.e shoot, hole. (e; Cowdung applied at \(250 \mathrm{mds} / \mathrm{ac}\). at the time of planting. (vi) \(\mathrm{G}-55 / 7\) (loca: . Vii, Unirrigated. (viii) 2 weedings and earthings. (ix) \(74.74^{\prime \prime}\). (x) As per treatments.
2. TREATMENTS :

4 dates of harvesting : \(D_{1}=20.11 .1958, D_{2}=6.12 .1958, D_{3}=21.12 .1958\) and \(D_{4}=6.1 .1959\).
3. DESIGN :
(i) R.B.D. (ii): a; 4 . (b) N.A. (iii) 6. (iv) (a) \(12^{\prime} \times 11^{\prime}\). (b) \(10^{\prime} \times 10^{\prime}\). (v) \(2^{\prime}\) between plots. (vi) Yes.
4. GENERAL :
(i) Medium. (ii) Nil. (iii) Yield of rhizomes. (iv) (a) \(1956-\) N A. (b) and (c) No. (v) a) and (b; N.A. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) 3231 lb. .ac. (ii) \(1316 \mathrm{lb} . j \mathrm{ac}\). (iii) Treatment differences are not significant. (iv) Av. y ield of rhizome in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{lcccc} 
Treatment & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\) & \(\mathrm{D}_{3}\) & \(\mathrm{D}_{4}\) \\
Av. yield & 3122 & 3049 & 2904 & 3848 \\
& S.E. \(/\) mean & \(=\) & \(537.2 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}
```

Crop :- Ginger (Rabi).
Site :- Ginger Res. Stn., Naya Bunglow.
Ref :- As. 57(31).
Type :- ' $\mathbf{C \prime}$.

```

Object :-To determine the best time of harvesting for Ginger crop.
1. BASAL CONDITIONS :
(i) (a' to 'c’ Nil. (ii) (a) Red loam. (b) N.A. (iii) 1.5.1957. (iv) (a) Ploughing. pulverising and wee ing. (b) Planting in double rows. (c) N.A. (d) \(12^{\prime \prime}\) between plants and \(2^{\prime}\) between double rows. \(e\) One rh zome shoot 'hole. (v’Cowdung applied at \(250 \mathrm{mds} / \mathrm{ac}\). at the time of planting. (vi) G-55/7 (lccal). vi I' n irrigated. (viii) Earthing and weeding-twice. (ix) \(74.64^{\prime \prime}\). ( x ) As per treatments.
2. TREATMENTS :

4 dates of harvesting : \(D_{1}=20.11 .1957, D_{2}=6.12 .1957 D_{3}=21.12 .1957\) and \(D_{4}=6.1 .1958\).
3. DESIGN :

Same as in expt. no. 56(35) on page 141.
4. GENERAL:
(i) The crop condition was good up to middle of July 1957. (ii) Whole experiment was affected by rhizomerot. Boredeaux's mixture and Perenox were sprayed. (iii) Yield of rhizomes. (iv) (a) 1956-N.A. (b) and (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(3013 \mathrm{lb} . / \mathrm{ac}\). (ii) \(528 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are highly significant. (iv) Av. yield of rhizome in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{lllll} 
Treatment & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\) & \(\mathrm{D}_{\mathbf{3}^{\prime}}\) & \(\mathbf{D}_{4}\) \\
Av. yield & 3412 & 3412 & 2178 & 3049 \\
& S.E. \(/\) mean & \(=\) & \(215.5 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Grop:-Ginger.
Site :- Ginger Res. Stn., Naya Bunglow.

Ref:- As. 59(60).
Type: \({ }^{\prime}{ }^{\prime}\) ' .
i

Object :-To determine the best time of harvesting for Ginger crop.
1. BASAL CONDITIONS :
(i) (a) No. (b) Ginger. (c) Nil. (ii) (a) Red loam. (b) N.A. (iii) 2.5.1959. (iv) (a) Ploughing and pulverising. (b) Planting in double rows. (c) N.A. (d) \(12^{\prime \prime}\) between plants and \(2^{\prime}\) between double rows. (e) One rhizome shoot/hole. (v) Cowdung applied at \(250 \mathrm{mds} / \mathrm{ac}\). at the time of planting. (vi) G-55/1 Nadiu (late). (vii) Unirrigated. (viii) 2 weedings and earthing. (ix) \(98.23^{\prime \prime}\). (x) As per treatments.
2. TREATMENTS :

4 dates of harvesting : \(\mathrm{D}_{1}=20.11 .1959, \mathrm{D}_{2}=6.12 .1959, \mathrm{D}_{3}=21.12 .1959\) and \(\mathrm{D}_{4}=6.1 .1960\).
3. DESIGN:
(i) R.B.D. (ii) (a) 4.
(b) \(12^{\prime} \times 44^{\prime}\).
(iii) 4
(iv) (a) \(12^{\prime} \times 11^{\prime}\).
(b) \(10^{\prime} \times 10^{\prime}\).
(v) N.A. (vi) Yes.
4. GENERAL :
(i) Medium. (ii) The crop was attacked by rhizome rot. Bordeaux's mixture sprayed. (iii) Yield of rhizomes. (iv) (a) 1956--1959. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 572 . \(\mathrm{lb} . / \mathrm{ac}\). (ii) \(1838 \mathrm{lb} . / \mathrm{ac}\). (iii) Treatment differences are not significant. (iv) Av. yield of rhizome in \(\mathrm{lb} . \mathrm{ac}\).
\begin{tabular}{llccc} 
Treatment & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\) & \(\mathrm{D}_{3}\) & \(\mathrm{D}_{4}\) \\
Av. yield & 6316 & \(\epsilon 425\) & 5881 & 4465 \\
& S.E./mean & \(=919.1 \mathrm{lb} . / \mathrm{ac}\). &
\end{tabular}

\section*{Crop:- Ginger. \\ Site :- Ginger Res. Str., Naya Runglow.}

\section*{Ref :- As. 59(57). \\ Type: \({ }^{6} \mathrm{C}^{9}\).}

Object:-To find out the effect of giving shade to 'Ginger plants.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Fallow. (c) Nil. (ii) (a) Red loam. (b) N.A. (iii) 1.5.1959. (iv) (a) Ploughing and pulverising (b) In double rows. (c) N A. (d) \(12^{\prime \prime}\). between plarts and \(2^{\prime}\) between double rows. (e) One rhizome shoot/hole. (v) Cowdung at \(250 \mathrm{mds} / \mathrm{ac}\). applied before planting. (vi) \(\mathrm{G}-55 / 1\) Nadiu. (late). (vii) Unirrigated. (viii) 1 weeding and earthing. (ix) \(98.23^{\prime \prime}\). (x) 24.12 .1959.

\section*{2. TREATMENTS}
1. Plarts open to sun.
2. Plants under shade of G.M. crop planted between rows.
3. DESIGN :
(i) R.B.D.
(ii) (a) 2 .
(b) \(17^{\prime} \times 24^{\prime}\).
(iii) 3
(iv) (a) \(17^{\prime} \times 12^{\prime}\).
(b) \(15^{\prime} \times 10\)
(v) and (vi) Yes
4. GENERAL :
(i) Medium. (ii) The crop was attacked by rhizome rot. Bordeaux's mixture sprayed. (iii) Yield of rhizomss. (iv) (a) 1959-1960. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil
5. RESULTS:
(i) \(7791 \mathrm{lb} . \mathrm{a}^{\prime a c}\). (ii) \(2178 \mathrm{Ib} . / \mathrm{ac}\). (iii) Treatment difference is not significant. (iv) Av. yield of rhizome in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{lcc} 
Treatment & 1 & 2 \\
Av. yield & 9194 & 6389
\end{tabular}
\[
\text { S.E./mean }=1257 \mathrm{lb} . / \mathrm{ac} .
\]
```

Crop :- Ginger.
Site :- Ginger Res. Stn., Naya Bunglow.
Ref :- As. 59(58)
Type :- ‘CV'.

```

Object:-To find out the bast system of spacing for different varisties of Ginger.
1. BASAL CONDITIONS :
(i) ;a) No. (b) Fallow. (c; N.I. (ii) (a) Red loam. (b) N.A. (iii) 5.5.1959. (iv) (a) Plough ng and pulverising. (b) In double rows. (c) N.A. (d) As per treatments. (e) 1 rhizome shoot, hole. (v) Cowdung at 250 mdsiac. applied before planting. (vi) As per treatments. (vii) Unirrigated. (viii) 2 weecings and 1 earthing. (ix) \(98.23^{\circ}\). (x) 30.12 .1959.

2, TREATMENTS:
Main-plot treatments :
2 varieties: \(\mathrm{V}_{1}=\mathrm{G}-55 / 1\) Nadia (late) and \(\mathrm{V}_{2}=\mathrm{G} \rightarrow 55 / 7\) local (late).
Sub-plot treatments :
3 spacings between plants: \(\mathrm{S}_{1}=6^{\prime \prime}, \mathrm{S}_{2}=9^{*}\) and \(\mathrm{S}_{3}=12^{\prime \prime}\).
2' spacing left between double rows.
3. DESIGN :
(i) Split-plot.
(ii) (a) 2 main-plots/block, 3 sub-plots'main-plot.
(b) \(14^{\prime} \times 72^{\prime}\). (iii) 3 . (iv) (a. \(14^{\prime} \times 12^{\prime}\). (b) \(12^{\prime} \times 10^{\prime}\). (v) and (vi) Yes.
4. GENERAL :
(i) Good. (ii) \(V_{2}\) plots were attacked by rhizome root. Bordeaux's mixture sprayed. (iii) Yield of rhizomes (iv) (a) No. (b) and (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(7458 \mathrm{lb} . / \mathrm{ac}\). (ii) (a) and (b) N.A. (iii) N.A. (iv) Av. yield of rhizome in lb./ac.
\begin{tabular}{c|ccc:c} 
& \(\mathrm{S}_{1}\) & \(\mathrm{~S}_{2}\) & \(\mathrm{~S}_{3}\) & Mean \\
\hline \(\mathrm{V}_{\mathbf{1}}\) & 14257 & 10770 & 14157 & 13061 \\
\(\mathrm{~V}_{2}\) & 2298 & 1695 & 1572 & 1855 \\
\hline Mean & 8277 & 633 & 7864 & 7458
\end{tabular}
S.E.'s N.A.

\section*{Crop :- Cardamom.}

Site :- Composite Res. Stn., Nongpoh.

Ref :- As. 59(15).
Type :- ' \(C\) '

Object:-To find out a suitable pre-sowing treatment of seed for Cardamom crop.
1. BASAL CONDITIONS:
(i) Newly reclaimed. (ii) (a) Red laterite. (b) N.A. (iii) By seedlings. (iv) Munzerabad (round type).
(v) 25.10 1959. Seed sown in well prepared beds in lines at \(3^{\prime \prime} \times 3^{\prime \prime}\) spacing. (vi) Nil. (vii) Cowdung at \(100 \mathrm{mds} / \mathrm{ac}\). applied a fortnight before sowing. (viii) Mulching with thatch grass, weeding twice and regular watering. (ix) Nil. (x) Unirrigated. (xi) \(85.89^{\prime \prime}\). (xii) Nil.
2. TREATMENTS :

4 pre-sowing seed treatments : \(\mathrm{T}_{1}=\) Rinsed with water, \(\mathrm{T}_{2}=\) Mixed with ash, \(\mathrm{T}_{3}=\) Mixed with ash and shaking the seed with sand in bottle and \(\Gamma_{4}=\) Rinsed with water and shaking the seed with sand in bottle.
3. DESIGN :
(i) R.B.D. (i)
(ii) (a) 4
(b) N.A.
(iii) 3. (iv) 100 seedlings. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Good. (ii) General applization of copper fungicide at 6 oz. per 10 gallons of water. (iii) Germination
record. (iv) (a) No. (b) Nil. (v) and (vi) Nil.
5. RESULTS :
(i) \(25.67 \%\) (ii) \(5.47 \%\) (iii) Treatment differences are not significant. (iv) Mean germination percentage.
\begin{tabular}{lcccc} 
Treatment & \(\mathrm{T}_{1}\) & \(\mathrm{~T}_{2}\) & \(\mathrm{~T}_{3}\) & \(\mathrm{~T}_{4}\) \\
Mean Percentage & 22.33 & 25.67 & 27.33 & 2733 \\
& & & & \\
& S.E. \(/\) mean & \(=\) & \(3.16 \%\) &
\end{tabular}

\author{
Crop :- Cardamom. \\ Site :- Composite Res. Stn., Nongpoh. \\ \section*{Ref :- As. 59(16). \\ \\ Type :- 'C'.}
}

Object: - To find out a suitable pre-sowing treatment of seed for Cardamom crop.
1. BASAL CONDITIONS :
(i) Newly reclaimed. (ii) (a) Red laterite. (b) N.A. (iii) By seedlings. (iv) Munzerabad (oblong). (v) 25.10.1959. Seeds sown in well prepared beds in lines at \(3^{\prime \prime} \times 3^{\prime \prime}\) spacing. (vi) Nil. (vii) Cowdung at 100 mds./ac. applied a fortnight before sowing. (viii) Mulching with thatch grass, weeding twice and regular watering. (ix) Nil. (x) Unirrigated. (xi) \(85.89^{\prime \prime}\). (xii) Nil.
2. TREATMENTS to 4. GENERAL :

Same as in expt. no. 59(15) above.
5. RESULTS :
(i) \(26.33 \%\). (ii) \(6.89 \%\). (iii) Treatment differences are not significant. (iv) Mean germination percentage.
\begin{tabular}{lcccc} 
Treatment & \(\mathrm{T}_{1}\) & \(\mathrm{~T}_{2}\) & \(\mathrm{~T}_{3}\) & \(\mathrm{~T}_{4}\) \\
Mean Percentage: & 27.67 & 18.67 & 24.67 & 34.33 \\
& & & & \\
& S.E. \(/\) mean & \(=\) & \(3.98 \%\)
\end{tabular}

\author{
Crop :- Gardanaom. \\ Site :- Composite Res. Stri, Nomgpoh.
}

Ref :- As. 59 (17).
Type:- ' \(C^{\prime}\) '.

\section*{1. BASAL CONDITIONS}
(i) Newly reclaimed. (ii) (a) Red laterite. (b) N.A. (iii) By seedlings. (iv) Munzerabad (rouad type). (v) 24.10.1959. Seeds sown in well prepared beds in lines at \(3^{\prime \prime} \times 3^{\prime \prime}\) spacing. (vi) Nil. (vii) Cowdurg at 100 mds./ac. applied a fortnight before sowing. (viii) Mulching with thatch grass, weeding twice and regular watering. (ix) Nil. (x) Unirrigated. (xi) \(85.89^{\prime \prime}\). (xii) Nil.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 59 (15) on page 145.
5. RESULTS :
(i) \(36.08 \%\).
(ii) \(7.58 \%\)
(iii) Treatment differences are not significant.
(iv) Mean germination percentage.
\begin{tabular}{llccc} 
Treatment & \(\mathrm{T}_{1}\) & \(\mathrm{~T}_{2}\) & \(\mathrm{~T}_{3}\) & \(\mathrm{~T}_{4}\) \\
Mean Percentage & 30.67 & 29.33 & 40.33 & 44.00 \\
& S.E. \(/\) mean & \(=\) & \(4.38 \%\)
\end{tabular}

\section*{Crop :- Cardamom.}

Site :- Composite Res. Stn., Nongpoh.

Ref :- As. 59(18).
Type :- ' C '.

Object:-To find out a suitable pre-sowing treatment of seed for cardamom crop.
1. BASAL CONDITIONS :
(i) Newly reclaimed. (ii) (a) Red laterite. (b) N.A. (iii) By seedlings. (iv) Munzerabad (oblong type).
(v) Seeds sown in well prepared beds in lines at \(3^{\prime \prime} \times 3^{\prime \prime}\) spacing. (vi) Nil. (vii) Cowdung at 100 mds/ac. applied a fortnight before sowing. (viii) Mulching with thatch grass, weeding twice and regular watering. (ix) Nil. (x) Unirrigated. (xi) \(85.89^{\circ}\). (xii) Nil.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. 59(15) on page 145.
5. RESULTS:
(i) \(46.17 \%\).
(ii) \(6.12 \%\).
(iii) Treatment differences are highly significant. (iv) Mean germination percentage.
\begin{tabular}{llccc} 
Treatment & \(\mathrm{T}_{1}\) & \(\mathrm{~T}_{2}\) & \(\mathrm{~T}_{3}\) & \(\mathrm{~T}_{4}\) \\
Mean Percentage & 39.67 & 40.00 & 48.67 & 56.33 \\
& & & & \\
& S.E. \(/\) mean & & \(3.53 \%\)
\end{tabular}

\section*{Crop:- Coconut. \\ Site :- Regional Coconut Res. Stn., Kahikuchi. \\ Ref:- As. 58(26).}

Object :-To find out the suitable manure for raising quality seedlingsfor Coconut.
1. BASAL CONDITIONS:
(i) (a) to (c) Nil.
(ii) (a) Alluvial loam.
(b) Refer below.*
(iii) N.A.
(iv) Local tall.
v) 12.5.1958.
*Table sowing the analysis of soil sample on \(\%\) air-dry basis.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Depth & Cource sand & Fine sand & Site & Moisture & Clay & \[
\begin{gathered}
\text { Loss } \\
\text { on } \\
\text { ignution }
\end{gathered}
\] & Avl. N & Avl. P & Avl. K &  & \[
\underset{\text { bater }}{\mathrm{pH}}
\]
extract & Acidity ppm. \\
\hline Surface & 11.2 & 20.5 & 24.0 & 1.8 & 38 & 4.8 & 0.13 & 0.005 & 0.02 & 5.0 & 4.8 & 89 \\
\hline 1' below & 10.0 & 15.6 & 44.0 & 2.0 & 26 & 4.6 & 0.10 & 0.001 & 0.02 & 5.0 & 4.4 & 151 \\
\hline \(2^{\prime}\), & 0.3 & 5.4 & 34.0 & 2.6 & 44 & 3.0 & 0.08 & 0.001 & 0.01 & 5.0 & 4.4 & 397 \\
\hline \(3^{\prime} \quad\) " & 8.6 & 15.7 & 29.0 & 3.6 & 41 & 6.6 & 0.06 & 0.009 & 0.01 & 5.0 & 4.6 & 319 \\
\hline
\end{tabular}

Planted at \(12^{\prime \prime} \times 14^{\prime \prime}\) spacing. (vi) 6 months. (vii) Nil. (viii) Weeding and hoeing. (ix) Nil. (x) Irrigated. (ix) \(71.59^{\prime \prime}\). (xii) Nil.
2. TREATMENTS :

6 manures : \(\mathrm{M}_{0}=\) Control, \(\mathrm{M}_{1}=\) Cowdung, \(\mathrm{M}_{2}=\) Compost, \(\mathrm{M}_{3}=\) Oilcake, \(\mathrm{M}_{4}=\) B. M . and \(\mathrm{M}_{5}=\) Ash. Quantity applied N.A. Manure applied in June by encircling every plant.
3. DESIGN :
(i) R.B.D. (ii) (a) 6 .
(b) N.A.
(iii) 5 .
(iv) 10
(v) Nil. (vi) Yes.
4. GENERAL :
(i) Fair. (ii) Nil. (iii) Height, girth and no. of functioning leaves. (iv) (a) 1958 -contd. (b) N.A. (v) N.A. (vi) and (vii) Nil.
5. RESULTS :

\section*{I. Height.}

(i) 8.5 mm . (ii) 1.1 mm . (iii) Treatment differences are not significant. (iv) Av. girth per tree in mm.
\begin{tabular}{llccccc} 
Treatment & 1 & 2 & 3 & 4 & 5 & 6 \\
Av. girth & 8.2 & 8.0 & 9.2 & 8.6 & 8.8 & 8.2 \\
& S.E. \(/\) mean & \(=0.47 \mathrm{~mm}\). & & &
\end{tabular}

\section*{III. No. of functioning leaves}
(i) 3.7 leaves. (ii) 0.4 leaves. (iii) Treatment differences are significant. (iv) Av. no. of functioning leaves/trees,
\begin{tabular}{lcccccc} 
Treatment & 1 & 2 & 3 & 4 & 5 & 6 \\
Av. no. of leaves & 3.6 & 4.0 & 4.2 & 3.6 & 3.4 & 3.4 \\
& S.E./mean & \(=\) & 0.18 leaves & & &
\end{tabular}

\section*{Crop :- Coconut. \\ Ref :- As. 59(25). \\ Site :- Regional Coconut Res. Stn., Kahikuchi. \\ Type :- ' \(\mathbf{M}\) '.}

Object:-To find out suitable manure for raising quality seedlings of Coconut.
1. BASAL CONDITIONS :
(i) Cultivable waste ; newly reclaimed. (ii) (a) Alluvial loam. (b) Refer expt. no. 58(26) on page 146. (iii) By seed nuts. (iv) Local tall. (v) 16.6 .1959 planted at \(\frac{1}{2}^{\frac{1}{\prime}} \times 1_{\frac{1}{4}}\) spacing. (vi) 6 months. (vii) Nil. (viii) Weeding and hoeing. (ix) Nil. (x) Irrigated. (xi) 61.7". (xii) -.
2. TREATMENTS to 4. GENERAL:

Same as in expt. no. \(58(26)\) on page 146.
RESULTS :
I. Height
(i) 78.19 mm . (ii) 18.19 mm . (iii) Treatment differences are not.significant. (iv) Av. height of plants in mm.
\begin{tabular}{lcccccc} 
Treatment & 1 & 2 & 3 & 4 & 5 & 6. \\
Av. height & 77.08 & 81.24 & 81.72 & 70.76 & 68.92 & 89.40 \\
& S.E./mean \(=\) & 8.13 mm. \\
II. Girth \\
(i) 7.73 mm. & (ii) 1.03 mm. & (iii) Treatment differences are significant. (iv) Av. girth of plants in mm.
\end{tabular}
\begin{tabular}{lcccccc} 
Treatment & 1 & 2 & 3 & 4 & 5 & 6 \\
Av. girth & 8.04 & 8.08 & 8.00 & 7.22 & 6.48 & 8.58 \\
& & & & & & \\
& S.E./mean \(=\) & 0.46 mm. & & &
\end{tabular}
III. No. of functioning leares
(i) 2.58 leaves, (ii) 0.67 leaves. (iii) Treatment differences are not significant. 'iv) Av. no. of fuactioning leaves itree.
\begin{tabular}{lcccccc} 
Treatment & 1 & 2 & 3 & 4 & 5 & 6 \\
Av. no. of leaves & 2.50 & 2.52 & 2.80 & 2.24 & 2.58 & 2.88 \\
& & & & & & \\
& S.E. mean & \(=\) & 0.30 leaves. & & &
\end{tabular}

\section*{Crop :- Coconut. \\ Ref :- As. 59(26). \\ Site :- Regional Coconut Res. Stn., Kahikuchi. \\ Type :- ' C '.}

Object:-To find out best time of planting nuts for raising quality seedlings of Coconut.
1. BASAL CONDITIONS :
(i) Cultivable waste ; newly reclaimed. (ii) (a) Alluvial loam. (b) Refer expt. no. 58 (26; on page 146 . 'iii) By seed nuts. (iv) Local tall. (v) Between lines- \(11^{\prime}\); within lines- \(1 \frac{1}{4}^{\prime}\). (vi, - , vii, Nil. (viii, Hueing and weeding. (ix) Nil. (x) Irrigated. (xi) 61.7". (xii) Nil.
2. TREATMENTS :

3 dates of planting seed nuts : \(\mathrm{D}_{1}=\) Early February, \(\mathrm{D}_{2}=\) Mid April and \(\mathrm{D}_{3}=\) Late June.
3. DESIGN :
(i) R.B.D.
(ii) (a) 3 .
(b) N.A.
(iii) 3.
(iv) 50 nuts/plot.
(v) Nil.
(vi) Yes.
4. GENERAL :
(i) Fair. (ii) Nil. (iii) Percentage of germination, height, girth no. of functioning leaves and total production of leaves. (iv) (a) 1959 (b) N.A. (v) and (vi) Nil.

RESULTS :
1. \% germination
(i) \(48.44 \%\). (ii) \(8.30 \%\) (iii) Treatment differences are not significant. (iv) Av. percentage of germination.
\begin{tabular}{lccccccc} 
Treatment & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\) & \(\mathrm{D}_{3}\) & Treatment! & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\) & \(\mathrm{D}_{\mathbf{3}}\) \\
Av. Percentage & 55.33 & 46.66 & 43.33 & Av. height & 72.50 & 58.81 & 42.82 \\
& S.E./mean \(=5.08 \%\) & & & S.E.; mean & \(=\) & 6.26 mm.
\end{tabular}

\section*{III. Girth}
(i) 5.52 mm . (ii) 0.62 mm . (iii) Treatment differences are highly significant. (iv) Av. girth/ plant in mm.
\begin{tabular}{llcccccc} 
Treatment & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\) & \(\mathrm{D}_{3}\) & & Treatment & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\)
\end{tabular}

\section*{V. Total no. of leaves}
(i) 3.27 leaves. (ii) 0.49 leaves. (iii) Treatment differences are not significant. iv, Av. no. of !eaves plant.
\begin{tabular}{lccc} 
Treatment & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\) & \(\mathrm{D}_{3}\) \\
Av. no. of leaves & 3.88 & 3.17 & 2.77 \\
& & & \\
& S.E./mean & \(=\) & 0.28 leaves
\end{tabular}

\section*{Crop:- Coconut. . Ref :- As. 58(25).}

Site :- Regional Coconut Res. Stn., Kahikuchi.
Type:- 'C'.
Object :--To evolve the best method of planting nuts for getting quality seedlings of Coconut.

\section*{1. BASAL CONDITIONS :}
(i) Cultivable waste ; newly reclaimed. (ii) (a) Alluvial loam. (b) Refer expt. no. 58 (26) on page \(146 . \quad\) (iii) By seed nuts. (iv) Local tall. (v) 12.5 .1958 planted at \(1_{2}^{1^{\prime}} \times 1^{\frac{1}{1}}\) ' spacing. (vi) - . (vii) Nil. (viii) Thirty hoeings \(18^{\circ}\) weedings. (ix) Nil. (x) Irrigated. (xi) \(71.57^{\prime \prime}\). (xii) -.
2. TREATMENTS :

3 methods of planting nuts in the nursery: \(\mathrm{M}_{1}=\) Horizontally, \(\mathrm{M}_{2}=\) Vertically and \(\mathrm{M}_{3}=\) Obliquely.
3. DESIGN :
(i) R.B.D.. (ii) (a) 3. (b) N.A. (iii) 3. (iv) 50 seed nuts/plot. (v) Nil. (vi) Yes,
4. GENERAL:
(i) Fair. (ii) Nil. (iii) Height and girth measurement, no. of functioning leaves and percentage germination. (iv) (a) 1958-contd. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
I. Height

\section*{II. Girth}
(i) 47.94 mm . (ii) 3.39 mm . (iii) Treatment differences are significant. (iv) Av. height/plant in mm .
\begin{tabular}{clcc} 
Treatment & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) \\
Av: height & 51.35 & 41.58 & .50 .89 \\
& \multicolumn{4}{c}{ S.E. \(/\) mean } & \(=\) & 1.96 mm.
\end{tabular} (i) 6.69 mm . (ii) 0.46 mm . (iii) Treatment diffe-
rences are not significant. (iv) Av. girth/plant in mm .
\begin{tabular}{llll} 
Treatment & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) \\
Av. girth & 6.25 & 6.97 & 6.86 \\
& S.E. \(/\) mean & \(=\) & 0.27 mm.
\end{tabular}

\section*{MII. No. of functioning leaves}
(i) 2.75 leaves. (ii) 0.15 leaves. (iii) Treatment differences are significant. (iv) Av. no. of functioning leaves/plant.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Treatment & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & Treatment & M \({ }_{1}\) & M & \(\mathrm{M}_{3}\) \\
\hline Av. no. of leaves & 2.85 & 2.60 & 2.81 & Av. Percentage & 84.6 & 91.3 & 93.9 \\
\hline & S.E./ & & aves. & & S.E./m & \(=\) & \\
\hline
\end{tabular}

\section*{Crop:- Cocomat. \\ Site :- Regional Caconut Res. Stra., Ka耳ilumehi. \\ Ref:- As. 59 (24). \\ Type:- ‘ \(C^{9}\).}

Object: To evolve the best miethod of planting nuis for getting quality seedlings of Coconnt.

\section*{1. BASAL CONDITIONS:}
(i) Cultivable waste ; newly reclaimed. (ii) (a) Alluvial loam. (b) Refer expt. no. 58(26) on page 146 . (iii) By seed nuts. (iv) Local tall. (v) 15.41959 pla (ted at \(1 \frac{1^{\prime}}{} \times 1 \frac{1}{4}\) ' spacing. (vi) --. (vi) Nil. (viii) Twenty eight hoeings ans twenty six weedings. (ix) Nil. \(\cdots\) (x) Irrigated. (xi) 61.7": (xii) Nil. .
2. TREATMENTS to 4. GENERAL:

Same as in expt. 58(25) above.
5. RESULTS :

\section*{I. Height}
II. Girth
(i) 51.28 mm . (ii) 2.88 mm . (iii) Treatment differences are highly significant. (iv) Av. hight/plant in mm .
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Treatment & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & Treatment & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & M, \\
\hline \multirow[t]{2}{*}{Av. height} & 62.71 & 33.69 & 57.45 & Av. girth & 5.79 & 3.05 & \(¢ .1\) \\
\hline & S.E./m & \(=1.6\) & & \multicolumn{3}{|r|}{S:E./mean \(=0.36 \mathrm{~mm}\).} & \\
\hline
\end{tabular}

\section*{III. No. of functioning leaves.}
(i) 2.59 leaves. (ii) 0.34 leaves. (iii) Treatment differences are significant. (iv) Av. no. of functioning leaves'plant.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Treatment & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & Treatment & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) \\
\hline \multirow[t]{2}{*}{Av. no. of leaves} & 2.96 & 1.95 & 2.85 & Av. Percentage & 52.00 & 28.66 & 49.33 \\
\hline & S.E./ & \(=\) & leaves. & & S.E./ & \(=\) & \\
\hline
\end{tabular}

\section*{Crop :- Cashewnut.}

Site :- Composite Res. Stn., Khanikar.
IV. \% germination.
(i) \(43.33 \%\). (ii) \(8.19 \%\). (iii) Treatment differences are significant. (iv) Av. \% of germination.

Object:-To find out the optimum dose of \(N\) for the development of Cashew sfedlings.
1. BASAL CONDITIONS :
(i) Uncultivated grazing land. (ii) (a) Clay loam. (b) \(\mathrm{N}=0.17 \%, \mathrm{P}=0.004 \% \quad \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{~K}=.046 \% \mathrm{~K}_{2} \mathrm{O}\) and \(\mathrm{pH}=5.1\). (iii) By seed. (iv) South Indian origin. (v) Seeds sown on 10.6.1959. transplanting on 27.7.1959 and spacing \(20^{\prime} \times 20^{\prime}\). (vi) 47 davs. (vii) Nil. (viii) One weeding. (ix) Nil. (x) Unirrigated. (xi) 74.8". (xii) Nil.
2. TREATMENTS :

5 manures : \(\mathrm{M}_{0}=\) Control, \(\mathrm{M}_{1}=\) Cowdung, \(\mathrm{M}_{2}=\) Cowdung +4 oz ./seedling of \(\mathrm{A} / \mathrm{S}, \mathrm{M}_{3}=\) Cowdung +60 ./ seedling of \(A / S\) and \(M_{1}=\) Cowdung +8 oz./seedling of \(A^{\prime} S\).
Cowdung wherever given, was applied at 10 lb ./seedling.
3. DESIGN :
(i) R.B.D. (ii) (a) 5 . (b) N.A. (iii) 4. (iv) 6 . (v) Single row. (vi) Yes.

4, GENERAL :
(i) Good. (ii) Nil. (iii) Plant height. (iv) (a) 1959-N.A. (b) N.A. (v) N.A. (vi) and (vii) N1.
5. RESULTS:
(i) 49 inches. (ii) 5.9 inches. (iii) Treatment differences are not significant. (iv) Av. height of plants in inches.
\begin{tabular}{llcccc} 
Treatment & \(\mathrm{M}_{0}\) & \(\mathrm{M}_{1}\) & \(\mathrm{M}_{2}\) & \(\mathrm{M}_{3}\) & \(\mathrm{M}_{4}\) \\
Av. height & 41 & 50 & 48 & 53 & 53 \\
& S.E. mean & \(=\) & 2.9 inches. & &
\end{tabular}

\section*{Crop :- Pineapple. \\ Site :- Pineapple Res. Stn., Kahikuchi.}

> Ref :- As. \(59(56)\).
> Type :- 'M'.

Object :-To find out the response of Pineapple to organic manures.
1. BASAL CONDITIONS :
(i) Forest. (ii) (a) Loamy type. (b) Top soil : N-0.179; Avl. P-0.012; Avl. K-0.014. Sub-soil . N0.125 ; Avl. \(\mathrm{P}-0.015\); Avl. \(\mathrm{K}-0.006\). pH-5 ( \(\mathrm{KNO}_{3}\) extract). (iii) Vegetative. (iv) Queen. (v) 15.9.1958: digging holes at \(45^{\prime \prime} \times 45^{\prime \prime}\) spacing. (vi) 5 months. (vii) 250 md ./ac. of F.Y.M. before planting. (viii) Twelve hoeings and 6 weedings. 'ix) Nil. (x) Unirrigated. (xi) \(62.6^{\prime \prime}\). (xii) Nil.

\section*{2. TREATMENTS :}

All combinations of 1 ), (2) and (3)
(1) 2 levels of \(N: N_{0}=0\) and \(N_{1}=300 \mathrm{lb}\)./ac. of mustard oilcake.
(2) 2 levels of \(P: P_{0}=0\) and \(P_{1}=120 \mathrm{lb}\)./ac. of B.M.
(3) 2 levels of \(\mathrm{K}_{2} \mathrm{O}: \mathrm{K}_{0}=0\) and \(\mathrm{K}_{2}=300 \mathrm{lb} . \mathrm{sac}\). of wood ash.
3. DESIGN :
(i) \(2^{3}\) Fact. in L. Sq. (ii) (a) 8. (b) N.A. (iii) 8 . (iv) 49 (including 24 plants of guard row). (v) 1 row. (vi) Yes.
4. GENERAL :
(i) Fair. (ii) Nil. (iii) Plant height taken one year after planting. (iv) (a) 1958-1962. (b) N.A. (v) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 60.32 cm . (ii) 7.51 cm . (iii) \(\mathrm{N} \times \mathrm{P}\) effect alone is highly significant. (iv) Av. height of plants in cm .

\begin{tabular}{ll} 
S.E. of any marginal mean & \(=1.33 \mathrm{~cm}\). \\
S.E. of body of any table & \(=1.88 \mathrm{~cm}\).
\end{tabular}

\section*{Crop :- Pimeapple.}

Site :- Pineapple Res. Stm., Kahikuchi.

Ref :- As. 59(55).
Type :- ' \(\mathbf{M}\) '.

Object :-To find out the performance of Pineapple in application of fertilizer.
1. BASAL CONDITIONS :
(i) Forest. (ii) (a) Loamy type. (b) Top soil : N-0.179; Avl. P-0.012; Avl. K-0.014. Sub-soil: \(\mathrm{N}-0.125\); Avl. \(\mathrm{P}-0.015\); Avl. \(\mathrm{K}-0.006 . \mathrm{pH}-5\) ( \(\mathrm{KNO}_{3}\) extract). (iii) Vegetative. (iv) Giantkew. (v) 2.10.1958; digglng holes at \(45^{\prime \prime} \times 45^{\prime \prime}\) spacing. (vi) 4 months. (vii) 250 md . of F.Y.M. (viii) Twelve hoeings and six weedings. (ix) Nil. (x) Unirrigated. (xi) 62.6". (xii) Nil.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 2 levels of N as \(\mathrm{A} / \mathrm{S}: \mathrm{N}_{0}=0\) and \(\mathrm{N}_{1}=100 \mathrm{lb}\)./ac.
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=300 \mathrm{lb} . / \mathrm{ac}\).
(3) 2 levels of \(\mathrm{K}_{2} \mathrm{O}\) as Pot. Sul. : \(\mathrm{K}_{0}=0\) and \(\mathrm{K}_{1}=200 \mathrm{lb}\)./ac.
3. DESIGN and 4. GENERAL :

Same as in expt. no. 59(56) on page 150.
5. RESULTS :
(i) 89.13 cm . (ii) 52.47 cm . (iii) \(\mathrm{N} \times \mathbf{P} \times \mathrm{K}\) effect alone is significant. (iv) Av. height of plants in cm .
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & Mean & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) \\
\hline \(\mathrm{K}_{0}\) & 86.27 & 88.37 & 87.32 & 88.77 & 85.87 \\
\hline \(\mathrm{K}_{1}\) & 89.74 & 92.14 & 90.94 & 92.59 & 89.29 \\
\hline Mean & 88.01 & 90.25 & \(\varepsilon 9.13\) & 90.68 & 87.58 \\
\hline \(\mathrm{P}_{0}\) & 91.22 & 90.14 & & & \\
\hline \(\mathrm{P}_{1}\) & 84.79 & 90.37 & & & \\
\hline
\end{tabular}
S.E. of any marginal mean
S.E. of body of any table
\(=9.28 \mathrm{~cm}\).
\(=13.12 \mathrm{~cm}\).

\section*{Crop :- Black Pepper.}

Site :- Composite Res. Stn., Khanikar.
Ref :- As. 59(43).
Type :- \({ }^{\prime} C\) '.
Object:-To find out the best time of planting cuttings for root formation.
1. BASAL CONDITIONS:
(i) Uncultivated grazing land. (ii) (a) Clay loam. (b) \(\mathrm{N}-0.17 \%\); \(\mathrm{P}-0.004 \% \mathrm{P}_{2} \mathrm{O}_{5} ; \mathrm{K}-0.046 \% \mathrm{~K}_{2} \mathrm{O}\) and \(\mathrm{pH}-5.1\). (iii) Cuttings. (iv, Local. (v) As per treatments at \(9^{\prime \prime} \times 6^{\prime \prime}\) spacing. (vi;- (vii, 5 md . cowdung 100 sq. ft, 2 md . sand for the expt. area. (viii) Plants are grown under thatch cover; weeding as and when necessary. (ix) Nil. ' x / Irrigated. (xi) \(74.8^{\prime \prime}\). (xii) Nil.
2. TREATMENTS :

12 dates of planting: \(D_{1}=1.4 .1959, D_{2}=1.5 .1959, D_{3}=1.6 .1959, D_{4}=1.7 .1959, D_{5}=1.8 .1959 . D_{6}=1.9 .1959\), \(D_{7}=1.10 .1959, D_{8}=1.11 .1959, \quad D_{9}=1.12 .1959, \quad D_{10}=1.1 .1960, \quad D_{11}=1.2 .1960\) and \(D_{12}=1.3 .1960\).
3. DESIGN :
(i) R.B.D.
(ii) (a) 12
(b) N.A. (iii) 3 .
(iv) 30 .
(v) Nil. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil.
(iii) \% of rooting and height of plant after two months.
(iv) (a) and (b) No.
(v) and (vi) Nil.
5. RESULTS:

\section*{1. \% of germination}
(i) \(21.36 \%\) (ii) \(4.51 \%\). (iii) Treatment differences are highly significant. (iv) Av. \% of germination.
\begin{tabular}{lccccccc} 
Treatment & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\) & \(\mathrm{D}_{3}\) & \(\mathrm{D}_{4}\) & \(\mathrm{D}_{5}\) & \(\mathrm{D}_{6}\) to \(\mathrm{D}_{12}\). \\
Av. Percentage & 94.40 & 65.43 & 45.53 & 27.77 & 23.20 & Nil. \\
& & & & & &
\end{tabular}

\section*{II. Height}
(i) 1.2 inches. (ii, 0.9 inches. (iii) Treatment differences are significant. (iv) Av. height, plant in inches.
\begin{tabular}{llllllll} 
Treatment & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\) & \(\mathrm{D}_{3}\) & \(\mathrm{D}_{4}\) & \(\mathrm{D}_{5}\) & \(\mathrm{D}_{6}\) to \(\mathrm{D}_{12}\) \\
E.v. height & 7.3 & 2.5 & 2.3 & 1.2 & 0.5 & Nil. \\
& S.E. \(/\) mean & & 0.52 inches. & & &
\end{tabular}```


[^0]:    About $85 \%$ of the experiments were laid out in Randomised Block and Latin square designs. Split-plot or strip-plot arrangement of factors was adopted in about $12 \%$ of the experiment and these were with factorial arrangement treatments. The block size varied from 2 to 30 plots in an R.B.D. experiment while in split plot the number of sub-plots per main-plot varied from 3 to 30 . The net plot size in R.B.D. reanged between $1 / 700$ th of an acre and $1 / 30$ th of an acre while in the split-plot design it ranged between 1/725th an acre and 1/40th of an acre. The no. of replications varied from 2 to 8.

[^1]:    G.M. $=2538 \mathrm{lb} . / \mathrm{ac} . ;$ S.E. $/$ mean $=320.9 \mathrm{lb} . / \mathrm{ac}$. and no. of trials $=5$

[^2]:    (i) $425.2 \mathrm{lb} . / \mathrm{ac}$. (ii) $164.6 \mathrm{lb} . / \mathrm{ac}$. (iii) Treatment differences are not significant. (iv) Av. yield of potato in lb ./ac.

[^3]:    (i) (a) Potato-Maize+Soyabean-Millet—Fallow. (b) Fallow. (c) Nil. (ii) (a) Sandy loam. (b) N.A. (iii) 31.3.1958. (iv) (a) Ploughing and pulverising. (b) Fur row planting. (c) $20 \mathrm{md} / \mathrm{ac}$. d; $2^{\prime} \times 1^{\prime}$. e) 1 tuber hole. ( $v$ ) Nil. (vi) Local Khasi-(medium). (vii) Unirrigated. (viii) Weeding and earthing up twice. (ix) $47.47^{\circ}$. (x) 13.11.1958.

[^4]:    Crop :- Mustard (Rabi).
    Centre :- Lakhimpur (c.f.).

    ## Ref :- As. 59(SFT). <br> Type :- ' $\mathbf{M}$ '.

